Math, asked by sahujaga762, 5 hours ago

if 3x/16+2y/7=420 and x+y=1800 find the value of x and y​

Answers

Answered by abhinavkr01
0

Answer:

We will find the value of x and y by substitution method.

Given,

 \frac{3x}{16}  +  \frac{2y}{7}  = 420 \\\frac{(21x + 32y)}{112}  = 420 \\ 21x + 32y = 47040 \\ 21x = 47040 - 32y \\ x =  \frac{(47040 - 32y)}{21}

Putting the value of ‘x’ in equation (ii),

x + y = 1800 \\ y +  \frac{(47040 - 32y)}{21}  = 1800 \\  \frac{21y  +  47040 - 32y}{21}  = 1800\\47040 - 11y = 37800 \\ 11y = 47040 -  37800 \\ y =  \frac{9240}{11}  = 840

Talking this value of ‘y’ obtained in equation (i), we get,

x =  \frac{(47040 - 32y)}{21}  \\ \:  \:  \:  \:  \:  \:  \: x =  \frac{(47040 - 32(840))}{21} \\ \:  \:  \: x =  \frac{(47040 - 26880)}{21} \\x =  \frac{20160}{21}  \\ x = 960

∴ x = 960

y = 840

Hope It Helps

::: Please Mark as Brainliest :::

Similar questions