If 3x^2 +10xy +3y^2 -5x-21y+k=0 represents a pair of straight lines then find value of k
Answers
3 x² + 10 x y + 3 y² = (3x + y) (x + 3 y)
=> L₁L₂ = (3x + y + p) (x + 3y + q)
Expand: 3x² + 10xy + 3y² + (p+3q) x + (3p+q) y + p q = 0 ---- (2)
Compare (1) and (2):
p + 3q = - 5 --- (3)
3 p + q = -21 --- (4)
pq = k ---- (5)
Solving (3) and (4) we get: -8 p = 58, p = -29/4
So q = -21 - 3 p = - 3(7+p) = 3/4
Using (5), k = p q = - 87/16.
============================
Alternatively, we can use a standard formula to solve it.
If a x² + 2h x y + b y² + 2 g x + 2fy + c = 0 represents a pair of straight lines, then
abc + 2 fgh - af² - b g² - ch² = 0.
h² ≥ ab. g² ≥ ac f² ≥ b c
Given : a = 3. b = 3. h = 10/2=5. g = -5/2. f = -21/2. c = k.
=> 3*3*k + 2 *21/2*5/2 * 5 - 3* 21²/4 - 3 * 5²/4 - k * 5² = 0
16 k = 525/2 - 1323/4 - 75/4
=> k = -87/16
Pair of lines L₁L₂: 3 x² + 10 x y + 3 y² - 5 x - 21 y + k = 0 ---- (1)
3 x² + 10 x y + 3 y² = (3x + y) (x + 3 y)
=> L₁L₂ = (3x + y + p) (x + 3y + q)
Expand: 3x² + 10xy + 3y² + (p+3q) x + (3p+q) y + p q = 0 ---- (2)
Compare (1) and (2):
p + 3q = - 5 --- (3)
3 p + q = -21 --- (4)
pq = k ---- (5)
Solving (3) and (4) we get: -8 p = 58, p = -29/4
So q = -21 - 3 p = - 3(7+p) = 3/4
Using (5), k = p q = - 87/16.
============================
Alternatively, we can use a standard formula to solve it.
If a x² + 2h x y + b y² + 2 g x + 2fy + c = 0 represents a pair of straight lines, then
abc + 2 fgh - af² - b g² - ch² = 0.
h² ≥ ab. g² ≥ ac f² ≥ b c
Given :
- a = 3.
- b = 3.
- h = 10/2=5.
- g = -5/2.
- f = -21/2.
- c = k.
=> 3*3*k + 2 *21/2*5/2 * 5 - 3* 21²/4 - 3 * 5²/4 - k * 5² = 0
=> 16 k = 525/2 - 1323/4 - 75/4
=> k = -87/16