Math, asked by arifaunitec, 2 months ago

if 3x^2+3y^2= 42 and xy=-15. find the value of (x-y)^2

Answers

Answered by pulakmath007
2

SOLUTION

GIVEN

3x² + 3y² = 42 and xy = - 15

TO DETERMINE

The value of ( x - y )²

EVALUATION

Here it is given that

3x² + 3y² = 42 and xy = - 15

Now

3x² + 3y² = 42

⇒ 3(x² + y²) = 42

⇒ (x² + y²) = 14

Therefore

 \sf{ {(x - y)}^{2} }

 \sf{  = {x}^{2}  - 2xy +  {y}^{2} }

 \sf{  = {x}^{2} +  {y}^{2}  - 2xy}

 \sf{  = 14  - 2 \times ( - 15)}

 \sf{  = 14  + 30}

 \sf{  = 44}

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. 1. divide : (4x²- 100) ÷ 6(x+5)

https://brainly.in/question/15559404

2. to verify algebraic identity a2-b2=(a+b)(a-b)

https://brainly.in/question/10726280

Answered by barani79530
0

Step-by-step explanation:

Here it is given that</p><p></p><p>3x² + 3y² = 42 and xy = - 15</p><p></p><p>Now</p><p></p><p>3x² + 3y² = 42</p><p></p><p>⇒ 3(x² + y²) = 42</p><p></p><p>⇒ (x² + y²) = 14</p><p></p><p>Therefore</p><p></p><p>\sf{ {(x - y)}^{2} }(x−y) </p><p>2</p><p> </p><p></p><p>\sf{ = {x}^{2} - 2xy + {y}^{2} }=x </p><p>2</p><p> −2xy+y </p><p>2</p><p> </p><p></p><p>\sf{ = {x}^{2} + {y}^{2} - 2xy}=x </p><p>2</p><p> +y </p><p>2</p><p> −2xy</p><p></p><p>\sf{ = 14 - 2 \times ( - 15)}=14−2×(

−15)

Similar questions