Math, asked by chandan05dey, 9 months ago

If(3x-2) is a factor of 3x3-kx2+21x-10 find the value of k

Answers

Answered by StarrySoul
84

Solution :

(3x-2) is a factor of the given polynomial

 \star \sf \: 3x - 2 = 0

 \rightarrow \sf \: 3x  = 0 + 2

 \rightarrow \sf \: 3x  = 2

 \rightarrow \sf \red{ x  =  \dfrac{2}{3} }

 \star \sf \: P(x) = 3 {x}^{3}  - k {x}^{2}  + 21x - 10

Putting the value of x = 2/3

 \rightarrow \sf \:P( \dfrac{2}{3} ) = 3(\dfrac{ 2}{3} ) ^{3}  - k( \dfrac{2}{3} )^{2}  + 21( \dfrac{2}{3} ) - 10

 \rightarrow \sf  3 \times  \dfrac{8}{27}   - k \times  \dfrac{4}{9}  + 21 \times  \dfrac{2}{3}  - 10

 \rightarrow \sf \cancel   \dfrac{24}{27}   - \dfrac{4k}{9}  + \cancel\dfrac{42}{3}  - 10

 \rightarrow \sf  \dfrac{8}{9}   - \dfrac{4k}{9}  + 14  - 10

 \rightarrow \sf  \dfrac{8}{9}   - \dfrac{4k}{9}  +4

 \rightarrow \sf  \dfrac{8 - 4k + 36}{9}    = 0

 \rightarrow \sf  \dfrac{44 -  4k }{9}    = 0

 \rightarrow \sf  44 -  4k  = 0

 \rightarrow \sf   -  4k  = 0 - 44

 \rightarrow \sf    - 4k  = - 44

 \rightarrow \sf \large\boxed { \sf k =  11}

Hence,The value of k = 11

Answered by jaisitaram123
5

i hope you like the answer please like the answer

Attachments:
Similar questions