Math, asked by sp208, 10 months ago

if 3x + 2/√x = 1 , then x - √x = ?​

Answers

Answered by mad210218
5

Given :

 \\  \bf \frac{3x + 2}{ \sqrt{x} }  = 1

To find :

Value of expression :

x -  \sqrt{x}

Solution :

The expression given in question is :

 \frac{3x + 2}{ \sqrt{x} }  = 1

(equation 1)

Multiplying both sides of equation 1 by square root of x,

we get

 \frac{3x + 2}{ \sqrt{x} }  \times  \sqrt{x}  = 1 \times  \sqrt{x}

this will become as,

3x + 2=  \sqrt{x}

(equation 2)

Squaring both sides of equation 2, we get

 {(3x + 2)}^{2} = ( {\sqrt{x} } )^{2}

so, it becomes,

 {(3x + 2)}^{2}  = x

and

9 {x}^{2}  + 12x + 4 = x

so,

9 {x}^{2}  + 11x + 4 = 0

On solving this equation,

the values of x :

(1) \\ x =  \frac{( - 11 -  \sqrt{ - 23)} }{18}  =  \frac{( - 11 - i \sqrt{23}) }{18}  \\ and \\ (2)  \\ x =  \frac{( - 11  +  \sqrt{ - 23)} }{18}  =  \frac{( - 11  +  i \sqrt{23}) }{18}

(equation 3)

From equation 2,

3x + 2 = x

3x - x = -2

so,

x - x = -2x - 2 = -2(x + 1)

(equation 4)

So, on putting values of x from equation 3 in equation 4,

The value of given expression :

by (3.1)

 - 2(\frac{( - 11 - i \sqrt{23}) }{18}   + 1) =   (\frac{  - 7  +  i \sqrt{23} }{9} )

The value of given expression :by (3.2)

 - 2(\frac{( - 11  +  i \sqrt{23}) }{18}   + 1) =   (\frac{  - 7   -   i \sqrt{23} }{9} )

So,

Values of x - x are :

  \\ \bf  (\frac{  - 7  +  i \sqrt{23} }{9} ) \\ and \\ \bf   (\frac{  - 7   -   i \sqrt{23} }{9} )

Similar questions