If (3x-2/x)=5 then find the value of (9x^2-4/x^2)
Answers
3x - 2/x = 5 (Given)
Multiply by x through:
3x² - 2 = 5x
Subtract 5x from both sides:
3x² - 5x - 2 = 0
Factorise:
(x - 2)(3x + 1) = 0
Apply zero product property:
x = 2 or x = -1/3
When x = 2
9x² - 4/x² = 9(2)² - 4/(2)²
9x² - 4/x² = 9(4) - 4/4
9x² - 4/x² = 36 - 1
9x² - 4/x² = 35
When x = - 1/3
9x² - 4/x² = 9 (-1/3)² - 4/(-1/3)²
9x² - 4/x² = 9(1/9) - 4/(1/9)
9x² - 4/x² = 1 - 36
9x² - 4/x² = -35
Answer: x = 35 or x = -35
------------------------------------------------------------------------------------
------------------------------------------------------------------------------------
ALTERNATIVE SOLUTION:
3x - 2/x = 5 (Given)
Square both sides:
(3x - 2/x)² = 5²
Expand (a - b)² = a² - 2ab + b²
(3x)² - 2(3x)(2/x) + (2/x)² = 25
9x² - 12 + 4/x² = 25
Add 12 to both sides:
9x² + 4/x² = 37
Rewrite equation into a² + b²:
(3x)² + (2/x)² = 37
*Side note:
(a + b)² = a² + 2ab + b²
⇒ a² + b² = (a + b)² - 2ab
Apply a² + b² = (a + b)² - 2ab:
(3x)² + (2/x)² = 37
(3x + 2/x)² - 2(3x)(2/x) = 37
(3x + 2/x)² - 12 = 37
(3x + 2/x)² = 49
Square root both sides:
(3x + 2/x)² = 49
(3x + 2/x) = 7
Find 9x² - 4/x² :
9x² - 4/x² = (3x)² - (2/x)²
9x² - 4/x² = (3x + 2/x) (3x - 2/x)
Since we found out that 3x + 2/x = 7 and 3x - 2/x = 5:
9x² - 4/x² = 7 x 5
9x² - 4/x² = 35
Answer: 35