Math, asked by sakshihavaldar9, 8 months ago

If √3x = √2x+1, then x is equal to ​

Answers

Answered by Anonymous
3

Answer:

x = \sqrt{3} +\sqrt{2}

Step-by-step explanation:

Given:

\sqrt{3} x=\sqrt{2} x+1

\sqrt{3} x-\sqrt{2} x=1

x(\sqrt{3}-\sqrt{2})=1

x=\frac{1}{\sqrt{3}-\sqrt{2}  }

Rationalizing the denominator and numerator:

x = \frac{1}{\sqrt{3}-\sqrt{2}  }  ×  \frac{\sqrt{3}+\sqrt{2}  }{\sqrt{3}+\sqrt{2}  }

x = \frac{\sqrt{3} +\sqrt{2} }{1}

Answered by Anonymous
128

\green{\underline{\sf Given:}}

 \sf\leadsto\sqrt{3} x =  \sqrt{2} x + 1

\green{\underline{\sf Find:}}

\sf \leadsto value \: of \: x

\green{\underline{\sf Solution:}}

\sf :\implies\sqrt{3} x =  \sqrt{2} x + 1 \\  \\ \sf :\implies\sqrt{3} x  -   \sqrt{2} x  = 1 \\  \\ \sf :\implies x(\sqrt{3}  - \sqrt{2})+ 1 \\  \\ \sf :\implies x =   \frac{1}{ \sqrt{3}  -  \sqrt{2} }   \\  \\ \sf \quad \star Rationalise \:  the  \: denominator\star \\  \\  \sf :\implies x =   \frac{1}{ \sqrt{3}  -  \sqrt{2} } \\  \\ \sf :\implies x =   \frac{1}{ \sqrt{3}  -  \sqrt{2} } \times  \frac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3} +  \sqrt{2}  }  \\  \\ \sf :\implies x =   \frac{(\sqrt{3}  +  \sqrt{2})}{ {( \sqrt{3} )}^{2} -  {( \sqrt{2}) }^{2}  } \\  \\ \sf \quad \star by \: using \:  {(a)}^{2}  -  {(b)}^{2}  = (a + b)(a - b) \star \\  \\ \sf :\implies x =  \frac{ \sqrt{3} +  \sqrt{2} }{3 - 2}  \\  \\ \sf :\implies x =  \frac{ \sqrt{3} +  \sqrt{2} }{1}  =  \sqrt{3}  +  \sqrt{2}  \\  \\  \boxed{\sf \to x =  \sqrt{3}  +  \sqrt{2}}

Similar questions