If 3x + 2y = 10 and, xy = 2.
Then Find the Value of (27x³ + 8y³)
Answers
AnswEr :
- 3x + 2y = 10
- xy = 2
- (27x³ + 8y³) = ?
• we will use the cubic formula here :
⇒ 3x + 2y = 10
- Cubing Both Sides
⇒ (3x + 2y)³ = (10)³
- (a + b)³ = a³ + b³ + 3ab(a + b)
⇒ (3x)³ + (2y)³ + 3.3x.2y(3x + 2y) = (10)³
⇒ 27x³ + 8y³ + 18xy(3x + 2y) = 1000
- Given Value of (3x + 2y) = 10 and Value of xy = 2, we will use that.
⇒ 27x³ + 8y³ + (18 × 2 × 10) = 1000
⇒ 27x³ + 8y³ + 360 = 1000
⇒ 27x³ + 8y³ = 1000 - 360
⇒ 27x³ + 8y³ = 640
∴ Hence, the Value of (27x³ + 8y³) is 640.
_________________________________
• Some Important Formulae :
⋆ (a + b)² = a² + b² + 2ab
⋆ (a – b)² = a² + b² – 2ab
⋆ (a + b)³ = a³ + b³ + 3ab(a + b)
⋆ (a – b)³ = a³ – b³ – 3ab(a – b)
⋆ (a² – b²) = (a + b)(a – b)
Answer:
Step-by-step explanation:
Given :-
3x + 2y = 10
xy = 2
To Find :-
27x³ + 8y³) = ???
Formula to be used :-
(a + b)³ = a³ + b³ + 3ab(a + b)
Solution :-
Solving equation, we get
⇒ 3x + 2y = 10
⇒ (3x + 2y)³ = (10)³ [(a + b)³ = a³ + b³ + 3ab(a + b)]
⇒ (3x)³ + (2y)³ + 3 × 3x × 2y(3x + 2y) = (10)³
⇒ 27x³ + 8y³ + 18xy(3x + 2y) = 1000
⇒ 27x³ + 8y³ + (18 × 2 × 10) = 1000
⇒ 27x³ + 8y³ + 360 = 1000
⇒ 27x³ + 8y³ = 1000 - 360
⇒ 27x³ + 8y³ = 640
Hence, The value (27x³ + 8y³) is 640.