Math, asked by nehazawar1517, 9 months ago

If 3x+2y=12 and xy=6, then find the value of 27x^3+8y^3

Answers

Answered by SillySam
7

Given :

  • 3x + 2y = 12
  • xy = 6

To find :

  • 27x³ + 8y³

Solution :

  • Using identity (a + b)³ = a³ + b³ + 3ab ( a + b)

(3x + 2y)³

12³ = (3x)³ + (2y)³ + 3 × 3x × 2y ( 3x + 2y)

1728 = 27x³ + 8y³ + 3 × 3 × 2 xy ( 12)

1728 = 27x³ + 8y³ + 18 × 6 (12)

1728 = 27 x³ + 8 y³ + 1296

1728 - 1296 = 27x³ + 8y³

432 = 27x³ + 8y³

Or

27 x³ + 8y³ = 432

_____________________________

 \underline{ \underline{ \large{ \mathfrak{ \orange{some} \:  \red{important }\: \pink{ identities : }}}}}

  1. (a + b)² = a² + b² + 2ab
  2. ( a - b)² = a² + b² - 2ab
  3. ( a+ b)(a - b) = a² - b²
  4. (a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca
  5. ( a + b)³ = a³ + b³ + 3ab (a + b)
  6. ( a - b)³ = a³ - b³ - 3ab ( a - b)
  7. a³ + b³ + c³ - 3xyz = ( a + b + c) ( a² + b² + c² - ab - bc - ca)
  8. a³ + b³ = ( a + b) ( a² + b² - ab)
  9. a³ - b³ = ( a - b) (a² + b² + ab)
Similar questions