Math, asked by noyboy902, 4 months ago

If (3x + 2y) = 17 and xy = 5, then find the value of 9x²+4y²​

Answers

Answered by Aritra3Kz22
1

 \large\mathfrak \pink{Solution:-}

 \underline \mathbb{GIVEN:-}

  • (3x + 2y) = 17
  • xy = 5

 \underline \mathbb{TO  \: FIND:-}

9x²+4y²

  \underline \mathbb{FORMULA:-}

(a + b)^{2}  = a {}^{2} +  {b}^{2}  + 2ab

 \underline \mathbb{BY  \: THE  \: PROBLEM:-}

(3x + 2y) {}^{2}  = (17) {}^{2}   \\  \\  \implies (3x) {}^{2}  +  {2y}^{2}   + 2(3x)(2y)  = 289\\  \\  \implies {9x}^{2}  +  {4y}^{2}  + 12xy = 289 \\  \\ \implies \: {9x}^{2}  +  {4y}^{2}  + 12 \times 5 = 289 \\  \\  \implies{9x}^{2}  +  {4y}^{2}  + 60 = 289 \\  \\  \implies \: {9x}^{2}  +  {4y}^{2} = 289 - 60 \\  \\  \implies{9x}^{2}  +  {4y}^{2} = 229

\underline \mathbb{ANSWER:-}

\implies \boxed{{9x}^{2}  +  {4y}^{2} = 229}

Answered by MrImpeccable
37

{\huge{\underline{\boxed{\red{\mathcal{Answer}}}}}}

Given:

  • 3x + 2y = 17
  • xy = 5

To find:

  • Value of 9x² + 4y²

Solution:

We know that,

3x + 2y = 17

Squaring both sides,

(3x + 2y)² = 17²

As, (a+b)² = a² + b² + 2ab,

(3x + 2y)² = 9x² + 4y² + 12xy

=> 9x² + 4y² + 12xy = 289

=> 9x² + 4y² + 12*5 = 289

=> 9x² + 4y² + 60 = 289

=> 9x² + 4y² = 229.

Formula used:

  • (a+b)² = a² + b² + 2ab

Hope it helps!!!!!!

Similar questions