Math, asked by k03983794, 4 months ago

If 3x – 4 is a factor of the polynomial p(x) = 2x^3– 11x^2+kx – 20,
find the value k​

Answers

Answered by vipashyana1
3

Answer:

k =  \frac{941}{36}

Step-by-step explanation:

g(x)=0 \\ </p><p>3x-4=0 \\ </p><p>3x=4 \\ </p><p>x=\frac{4}{3}  \\ </p><p>p(x)=0 \\ </p><p>2x³-11x²+kx-20=0 \\ 2 \times  { (\frac{4}{3}) }^{3}  - 11   \times  { (\frac{4}{3} )}^{2}  + k \times  \frac{4}{3}  - 20 = 0 \\ 2 \times  \frac{64}{27}  - 11 \times  \frac{16}{9}  +  \frac{4k}{3}  - 20 = 0 \\  \frac{128}{27}  -  \frac{176}{9}  +  \frac{4k}{3}  - 20 = 0 \\  \frac{127 - 528 + 36k - 540}{27}  = 0 \\ 127 - 528 + 36k - 540 = 0 \times 27 \\ 127 - 528 + 36k - 540 = 0 \\ 127 - 528  - 540+ 36k = 0 \\ ( - 941) + 36k = 0 \\ 36k = 941 \\ k =  \frac{941}{36}

Similar questions