Math, asked by SukmitLepcha3, 9 months ago

If 3x+4y=16 and 3x-4y=4,find the value of xy. ((Hint:Use the formula (p+q)^2-(p-q)^2=4pq))..

Answers

Answered by Darkrai14
180

Step-by-step explanation:

ᏀᏆᏙᎬΝ:-

\sf 3x+4y=16

\sf 3x-4y=4

Ꭲᝪ ᖴᏆᑎᗞ:-

\sf xy

ʜɪɴᴛ:-

\sf (p+q)^2 - (p-q)^2 = 4pq

ន០ɭ⩏Ƭɨ០⩎:-

\sf 3x + 4y = 16

Squaring both the sides of the equation will give,

\sf (3x+4y)^2=(16)^2

\sf (3x+4y)^2 = 256

__________________________

\tt 3x - 4y = 4

Squaring both the sides,

\tt (3x-4y)^2 = (4)^2

\tt (3x-4y)^2 = 16

___________________________

Let p = 3x

q = 4y

Using the hint,

\sf (p+q)^2 - (p-q)^2 = 4pq

\sf (3x + 4y)^2 - (3x-4y)^2 = 4 \times 3x \times 4y

\sf (16)^2 - (4)^2 = 48xy

\sf 256 - 16 = 48xy

\sf 240 = 48xy

\sf xy = \dfrac{240}{48}

\sf xy = 5

Value of xy is 5

Answered by Manish29op
2

Answer:let 3x be p and 4y be q

3x+4y^2-3x-4y^2=43x4y

9x^2+16y^2-9x^2-16y^2=4 3x4y

-12xy=4

xy=4/-12

xy=-3

Step-by-step explanation:

Similar questions