Math, asked by seemarai0906, 4 months ago

If 3x-5y=1 and xy=6, find the value of 9x²+25y².​

Answers

Answered by Anonymous
0

Answer:

Given

xy = 6

so,

3x-5y = 1

(3x - 5y) {}^{2}  = 1 {}^{2} \\ (3x) {}^{2}  - 2 \times 3x \times 5y + (5y) {}^{2}  = 1 \\ 9x {}^{2}  - 30xy + 25y {}^{2}  = 1 \\ 9x {}^{2}  + 25y {}^{2}  - 30xy = 1 \\ 9x {}^{2}  + 25y {}^{2}  - 30 \times 6 = 1 \\ 9x {}^{2}  + 25y {}^{2}  - 180 = 1 \\ 9x {}^{2}  + 25y {}^{2}  = 1 + 180 \\ 9x {}^{2}  + 25y {}^{2}  = 181

Answered by khashrul
0

Answer:

9x^2 + 25y^2 = 181

Step-by-step explanation:

Given that, 3x - 5y = 1

=> 9x^2 + 25y^2 - 2.3x.5y = 1  [squaring both sides]

=>9x^2 + 25y^2 = 1 + 30xy = 1 + 30*6  [using the given value of xy = 6]

=>9x^2 + 25y^2 = 181

Similar questions