if (3x - 5y) = 10 and xy = 5, find the value of
Answers
Answer:
Q22 If 3x+5y = 11 and xy = 2, find the value of 9x^2 +25y^2.
Given that,3x + 5y = 11Squaring both sides, we get(3x + 5y)2 = (11)2(3x)2 + (5y)2 + 2 (3x) (5y) = 1219x2 + 25y2 + 30xy = 1219x2 + 25y2 + 30 (2) = 1219x2 ... More
Given -
To find -
- the value of
Solution -
Squaring both sides, we get
Algebraic Identity used -
More Identities we should know -
(a + b)²=a² + 2ab + b²=( - a- b)²
(a - b)² = a² - 2ab + b²
(a - b)(a + b) = a² - b²
(a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca
(a + b - c)² = a² + b² + c² + 2ab - 2bc - 2ca
(a - b + c)² = a² + b² + c² - 2ab - 2bc + 2ca
(- a + b + c)² = a² + b² + c²- 2ab + 2bc - 2ca
(a - b - c)² = a² + b² + c² - 2ab + 2bc - 2ca
(a + b)³ = a³ + b³ + 3ab(a + b)
(a - b)³ = a³ - b³- 3ab(a - b)
a³ + b³ = (a + b)³ - 3ab(a + b)= (a + b) (a²ab + b²)
a³ - b³ = (a - b)³ + 3ab (a - b) = (a − b) (a² + ab + b²)
a³ + b³ + c³-3abc = (a + b + c) (a² + b²+c²- ab-bc-ca) if a+b+c=0 then a³ + b3 + c³ = 3abc