Math, asked by tayebaaq7, 5 months ago

If (3x - 5y) = 10 and xy=5, then find the value of 9x2 +25y2.​

Answers

Answered by priyel
4

Answer:

 \huge\boxed{\tt\implies:  249}

Step-by-step explanation:

 \bf(3x - 5y) = 10  -  -  -  -  -  -  - (1) \\\bf \:  \:  xy=5  \bf\implies: x =  \frac{5}{y}  \\  \\ \bf \: value \: of \: x \: put \: in \: (1) \\  \tt\implies:  3 \times \frac{5}{y}  - 5y = 10 \\  \\\tt\implies:   \frac{15 -  {5y}^{2} }{y} = 0   \\  \\ \tt\implies:  15 -  {5y}^{2}  = 0 \\  \\ \tt\implies:   {5y}^{2}  = 15 \\  \\ \tt\implies:   {y}^{2}  =  \frac{15}{5}  \\  \\ \tt\implies:   {y}^{2}  = 3 \\  \\  \boxed{\tt\implies:  y =   \pm\sqrt{3} } \\  \\ \tt\implies:  value \: of \: x =  \frac{5}{ \sqrt{3} } or \:   - \frac{5}{ \sqrt{3} }  \\  \\   \sf \therefore \:  {9x}^{2}  +  {25y}^{2}  \\  \\ \tt\implies:  9 \times(  { \frac{5}{ \sqrt{3} } })^{2}  + 25 \times  { \sqrt{3} }^{2}  \\  \\ \tt\implies:   \frac{9 \times 25}{3}  + 25 \times 3 \\  \\ \tt\implies:   \frac{225 + 522}{3}  \\  \\ \tt\implies:   \frac{747}{3}  \\  \\  \boxed{\tt\implies:  249}

Similar questions