Math, asked by annmary03, 8 months ago

If 3x=cosecθ and 3/x=cotθ, then find the value of 3(x²-1/x²) PLEASE HELP BEST ANSWER WILL BE MARKED BRAINLIEST

Answers

Answered by pulakmath007
13

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

We are aware of the Trigonometric identity that

  \sf{{ \cosec}^{2} \theta -{ \cot}^{2} \theta   = 1 }

GIVEN

 \displaystyle \:  \sf{3x = \cosec \theta   \:  \:  \: and \:  \:   \frac{3}{x} = \cot \theta  \:  \: \: }

TO FIND

 \displaystyle \:  \sf{3 \bigg( {x}^{2}  -  \frac{1}{ {x}^{2} } \bigg )\: }

CALCULATION

 \displaystyle \:  \sf{3x = \cosec \theta   \: \: }

  \implies\displaystyle \:  \sf{x =  \frac{1}{3} \cosec \theta  } \:  \:  \: .....(1)

Again

 \displaystyle \:  \sf{   \frac{3}{x} = \cot \theta  \:  \: \: }

 \implies \:  \displaystyle \:  \sf{   \frac{1}{x} = \frac{1}{3}  \cot \theta  \:  \: \: } \:  \:  \: ......(2)

Now

 \displaystyle \:  \sf{3 \bigg[ {x}^{2}  -  \frac{1}{ {x}^{2} } \bigg] \: }

 =  \displaystyle \:  \sf{3 \bigg[ { \bigg( \frac{1}{3}  \cosec \theta \bigg)}^{2}  - { \bigg( \frac{1}{3}  \cot \theta \bigg)}^{2}  \: \bigg] \: }

  =  \displaystyle \: 3 \times  \frac{1}{9} \bigg(  \sf{{ \cosec}^{2} \theta -{ \cot}^{2} \theta  \bigg) }

  =  \displaystyle \: \frac{1}{3}

RESULT

 \boxed{  \displaystyle \:  \sf{ \:  3 \bigg[ {x}^{2}  -  \frac{1}{ {x}^{2} } \bigg] \: } =  \frac{1}{3}  \:  \: \: }

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

Find the value of

(1+tan13)(1+tan32)+(1+tan12)(1+tan33)

https://brainly.in/question/23306292

Answered by MaheswariS
1

\underline{\textsf{Given:}}

\mathsf{3x=\,cosec\theta}

\mathsf{\dfrac{3}{x}=cot\,\theta}

\underline{\textsf{To find:}}

\textsf{The value of}\;\mathsf{3(x^2-\dfrac{1}{x^2})}

\underline{\textsf{Solution:}}

\textsf{We know that, the identity}

\mathsf{cosec^2\theta-cot^2\theta=1}

\implies\mathsf{(3x)^2-(\dfrac{3}{x})^2=1}

\implies\mathsf{9x^2-\dfrac{9}{x^2}=1}

\implies\mathsf{9(x^2-\dfrac{1}{x^2})=1}

\implies\mathsf{3{\times}3(x^2-\dfrac{1}{x^2})=1}

\implies\boxed{\mathsf{3(x^2-\dfrac{1}{x^2})=\dfrac{1}{3}}}

\underline{\textsf{Answer:}}

\textsf{The value of}\;\mathsf{3(x^2-\dfrac{1}{x^2})}

\textsf{is}\;\mathsf{\dfrac{1}{3}}

Find more:

Eliminate theta if x=acot theta+b cosec theta, y=a cosec theta+b cot theta

https://brainly.in/question/9317302

Sin theta + cos theta =m ,tan theta +cot theta =n eliminate theta in each of the following

https://brainly.in/question/9594728

Similar questions