Math, asked by pra8yonee0dpuja, 1 year ago

If 3x=sec theta and 3/x=tan theta,then find 9(x 2 -1/x 2 )

Answers

Answered by SubratKumarNayak
79

Here is your answer

Attachments:
Answered by mysticd
76

Answer:

The\: value \:of \:9(x^{2}-\frac{1}{x^{2}})=1

Step-by-step explanation:

3x=sec\theta ---(1)

\frac{3}{x}=tan\theta--(2)

The\: value \:of \:9(x^{2}-\frac{1}{x^{2}})\\=9x^{2}-\frac{9}{x^{2}}\\=(3x)^{2}-\big(\frac{3}{x}\big)^{2}\\=(sec\theta)^{2}-(tan\theta)^{2}\\=sec^{2}\theta-tan^{2}\theta\\=1

/* By Trigonometric identity:

\boxed {sec^{2}\theta-tan^{2}\theta=1}*/

Therefore,

The\: value \:of \:9(x^{2}-\frac{1}{x^{2}})=1

•••♪

Similar questions