If 3x =sec theta and 3/x=tan theta,then find the value of :x^2-1/x
Answers
Answered by
20
3x = sec∅ => x = secx/3
3/x = tan∅ => 1/x = tanx/3
then, (x² - 1)/x = x²/x - 1/x
= x - 1/x = (secx/3 - tanx/3)
= (secx - tanx)/3
hence, (x² - 1)/x = (sec - tanx)/3
3/x = tan∅ => 1/x = tanx/3
then, (x² - 1)/x = x²/x - 1/x
= x - 1/x = (secx/3 - tanx/3)
= (secx - tanx)/3
hence, (x² - 1)/x = (sec - tanx)/3
Answered by
0
3x = sec∅ => x = secx/3
3/x = tan∅ => 1/x = tanx/3
then, (x² - 1)/x = x²/x - 1/x
= x - 1/x = (secx/3 - tanx/3)
= (secx - tanx)/3
hence, (x² - 1)/x = (sec - tanx)/3
Similar questions