if 3x/(x-6)(x+a)=2/x-6 +1/x+a, then a=?
Answers
Given, x - 1/x = 6 . . . . . . . . { 1 }
or (x - 1/x) = 6²
or x² + 1/x² - 2 =36
or x² + 1/x² = 38
or x² + 1/x² + 2 = 40
or (x + 1/x)² = 40
so x + 1/x = ±2√10 . . . . . . . . { 2 }
Multiplying { 1 } and { 2 }
x² - 1/x² = ±12√10
or (x² - 1/x²)³ = (±12√10)³
or (x²)³ - (1/x²)³ - 3(x² - 1/x²) = ±17280√10
or (x²)³ - (1/x²)³ - 3(±12√10) = ±17280√10
or x^6 - 1/x^6 = ±17280√10 + (±36√10)
so x^6 - 1/x^6 = ±17316√10
Answer:
Given, x - 1/x = 6 . . . . . . . . { 1 }
or (x - 1/x) = 6²
or x² + 1/x² - 2 =36
or x² + 1/x² = 38
or x² + 1/x² + 2 = 40
or (x + 1/x)² = 40
so x + 1/x = ±2√10 . . . . . . . . { 2 }
Multiplying { 1 } and { 2 }
x² - 1/x² = ±12√10
or (x² - 1/x²)³ = (±12√10)³
or (x²)³ - (1/x²)³ - 3(x² - 1/x²) = ±17280√10
or (x²)³ - (1/x²)³ - 3(±12√10) = ±17280√10
or x^6 - 1/x^6 = ±17280√10 + (±36√10)
so x^6 - 1/x^6 = ±17316√10
Step-by-step explanation: