Math, asked by SarcasticBunny, 3 months ago

If 3x + y/5 = 10 and xy = 5 then find 27x3 + y3/125

Answers

Answered by Anonymous
20

Correct Question :-

\sf If\; 3x + \dfrac{y}{5} = 10 \; and \; xy = 5 \; then\;find \; 27x^{3} + \dfrac{y^{3}}{125}

Solution :-

❒ Here, we will do cubing on both sides of the first equation.  

____________

\sf \implies \bigg\{ 3x + \dfrac{y}{5} \bigg\}^{3} = 10^{3}  

\bf \maltese \;\; ( a + b )^{3} = a^{3} + b^{3} + 3ab( a + b )

\sf \implies \{ 3x \}^{3} + \bigg\{ \dfrac{y}{5} \bigg\}^{3} + \bigg\{ 3 \times 3x \times \dfrac{y}{5} \bigg\} \bigg\{ 3x + \dfrac{y}{5} \bigg\} = 1000

\bf \maltese \;\; putting\; 'xy'\; as \;5 

\bf \maltese \;\; putting\; ' \;3x + \dfrac{y}{5} \; ' \;\; as 10

\sf \implies 3x^{3} + \dfrac{y^{3}}{125} + \{ 9 \times 10 \} = 1000

\sf \implies 3x^{3} + \dfrac{y^{3}}{125} + 90 = 1000

\sf \implies 3x^{3} + \dfrac{y^{3}}{125} = 1000 -90  

\boxed{\bf{ \bigstar \;\; 3x^{3} + \dfrac{y^{3}}{125} = 910 }}

____________

Hence,  

  • The answer is 910  

____________

Similar questions