Math, asked by rashmitaghosh5, 1 month ago

if 3x+y = 81 and 81x+y = 38, then the value of x and y are respectively.​

Answers

Answered by BrainlyTwinklingstar
10

Answer

\sf \dashrightarrow 3x + y = 81 \: \: --- (i)

\sf \dashrightarrow 81x + y = 38 \: \: --- (ii)

By first equation,

\sf \dashrightarrow 3x + y = 81

\sf \dashrightarrow 3x = 81 - y

\sf \dashrightarrow x = \dfrac{81 - y}{3}

Now, let's find the value of y by second equation.

\sf \dashrightarrow 81x + y = 38

\sf \dashrightarrow 81 \bigg( \dfrac{81 - y}{3} \bigg) + y = 38

\sf \dashrightarrow \dfrac{6561 - 81y}{3} + y = 38

\sf \dashrightarrow \dfrac{6561 - 81y + 3y}{3} = 38

\sf \dashrightarrow \dfrac{6561 - 78y}{3} = 38

\sf \dashrightarrow 6561 - 78y = 38 \times 3

\sf \dashrightarrow 6561 - 78y = 114

\sf \dashrightarrow -78y = 114 - 6561

\sf \dashrightarrow -78y = -6447

\sf \dashrightarrow y = \dfrac{-6447}{-78}

\sf \dashrightarrow y = \dfrac{2149}{26}

Now, let's find the value of x by first equation.

\sf \dashrightarrow 3x + y = 81

\sf \dashrightarrow 3x + \dfrac{2149}{26} = 81

\sf \dashrightarrow \dfrac{78x + 2149}{26} = 81

\sf \dashrightarrow 78x + 2149 = 81 \times 26

\sf \dashrightarrow 78x + 2149 = 2106

\sf \dashrightarrow 78x = -43

\sf \dashrightarrow x = \dfrac{-43}{78}

Hence, the values of x and y are -43/78 and 2149/26 respectively.

Similar questions