if (-4,0)and (4,0) are two vertices of an equilateral find coordinates of its third vertex.
Answers
Answer:
Let C(x,y) be the third vertex of triangle ABC having two vertices at A(-4,0) and B(4,0).Since △ABC is equilateral. Therefore,
AC=BC=AB
Now,AC=BC
⇒
(x+4)
2
+(y−0)
2
=
(x−4)
2
+(y−0)
2
⇒(x+4)
2
+y
2
=(x−4)
2
+y
2
⇒16x=0
⇒x=0
Again
,AC=BC=AB
⇒AC=AB
⇒
(x+4)
2
+(y−0)
2
=
(4+4)
2
+0
2
⇒(x+4)
2
+y
2
=64
⇒(0+4)
2
+y
2
=64
⇒y
2
=48
⇒y=±4
3
Hence, the coordinates of the third vertex are C(0,4
3
)andD(0,−4
3
).
Step-by-step explanation:
hope it helped
GiveN:-
- Two verices of triangle are (-4,0) and (4,0) .
- The triangle is a equilateral triangle.
To FinD:-
- Coordinate of third vertex .
SolutioN :-
Let us name the points as A(-4,0) and B (4,0)
We know that in a equilateral triangle all sides are equal ,hence distance of all three points from each other will also be equal . Let us take third vertex be C( x , y ) . Now , we will use Distance Formula :-
Distance between A and B :-
⇒ D = √[ (x2 - x1)² + (y2 - y1)² ]
⇒ D = √ [ (4+4)² + (0-0)² ]
⇒ D = √ 8² + 0²
⇒D = √64
⇒ D = 8
Distance between B and C :-
⇒ D' = √ [ ( x2 - x1 )² + (y2 - y1)² ]
⇒ D' = √ [ (4 - x)² + ( y -0)² ]
⇒ D' = √ [ 4² + x² -2*4*x + y² ]
⇒ D' = √ [ 16 + x² - 8x + y²]
⇒ 8 = √ [ 16 + x² - 8x + y² ]
⇒ x² + y² - 8x + 16 = 64
⇒ x² + y² - 8x = 64 - 16
⇒ x² + y² - 8x = 48 . .......................[ i ]
Distance between C and A :-
⇒ D" = √ [ (x2 - x1 )² + (y2 - y1 )² ]
⇒ D" = √ [ ( x + 4)² + (y - 0)² ]
⇒ D" = √ [ x² + 16 + 2*4*x + y² ]
⇒ D" = √ [ x² + 16 + 8x + y² ]
⇒ 8 = √ [ x² + 16 + 8x + y² ]
⇒ 64 = x² + 16 + 8x + y²
⇒ x² + y² + 8x = 64 - 16
⇒ x² + y² + 8x = 48. ......................[ii]
Subtracting equations (i) and (ii) :-
⇒ ( x² + y² - 8x ) - ( x² + y² + 8x ) = 48 - 48
⇒ x² + y² - 8x - x² - y² - 8x = 0
⇒ -16x = 0
⇒ x = 0/(-16)
⇒ x = 0
Putting this value in (ii) :-
⇒ x² + y² + 8x = 48
⇒ 0² + y² + 8*0 = 48
⇒ y² = 48
⇒ y² = 16*3
⇒ y = √16 * √3
⇒ y = 4√3 .