if (-4,0) and (4,0) are two vertices of an equilateral triangle , find the coordinates of its third vertices
Nandini1111:
plz tell me the right ans .Im getting ans(0,4) is it right??
Answers
Answered by
147
Let A(x,y), B(-4,0), C(4,0)
Distance between BC = 8 (Calculate it)
Distance between AB = √ (-4-x)^2 + (0-y)^2
Distance between AC = √ (4-x)^2 + (0-y)^2
Given that the triangle is equilateral. So, AB=BC= AC
AB=AC
√(-4-x)^2+ (0-y)^2 = √ (4-x)^2+ (0-y)^2
(-4-x)^2+ (0-y)^2 = (4-x)^2+ (0-y)^2
(-4-x)^2= (4-x)^2
x^2+8x+16= x^2-8x+16
8x+8x= 16-16
x= 0 ..........(1)
Again, AC = BC
√(4-x)^2+ (0-y)^2 = 8
(4-x)^2+ (0-y)^2= 64
(4-0)^2+ (0-y)^2 { substituting 1}= 64
4^2 + y^2 = 64
y^2 = 64-16=38
y = +√38 or -√38
Therefore, x=0 and y = +√38 or -√38
Third vertex is (0, √38) or (0,-√38)
Distance between BC = 8 (Calculate it)
Distance between AB = √ (-4-x)^2 + (0-y)^2
Distance between AC = √ (4-x)^2 + (0-y)^2
Given that the triangle is equilateral. So, AB=BC= AC
AB=AC
√(-4-x)^2+ (0-y)^2 = √ (4-x)^2+ (0-y)^2
(-4-x)^2+ (0-y)^2 = (4-x)^2+ (0-y)^2
(-4-x)^2= (4-x)^2
x^2+8x+16= x^2-8x+16
8x+8x= 16-16
x= 0 ..........(1)
Again, AC = BC
√(4-x)^2+ (0-y)^2 = 8
(4-x)^2+ (0-y)^2= 64
(4-0)^2+ (0-y)^2 { substituting 1}= 64
4^2 + y^2 = 64
y^2 = 64-16=38
y = +√38 or -√38
Therefore, x=0 and y = +√38 or -√38
Third vertex is (0, √38) or (0,-√38)
Answered by
67
Answer:
Let C(x,y) be the third vertex of triangle ABC having two vertices at A(-4,0) and B(4,0).Since ABC is an equilateral triangle. Therefore,
AC=BC=AB
now, AC=BC
√(x+4)^2 + (y+0)^2=√(x-4) ^2 + (y-0) ^2
(x+4)^2 + y^2=(x-4) ^2 + y^2
16x=0
x=0
Again, AC=AB
√(x+4)^2+(y-0) ^2=√(4+4)^2 + 0
(x+4)^2+ y^2 = 64
(0+4)^2 + y^2= 64
y^2= 48
y= +/- 4√3
Hence, the coordinates of the third vertex are C(0,4√3)/(0,-4√3)
Step-by-step explanation:
Similar questions
Math,
8 months ago
Math,
8 months ago
Science,
8 months ago
History,
1 year ago
Social Sciences,
1 year ago
Social Sciences,
1 year ago
Social Sciences,
1 year ago