Math, asked by hyzam945, 8 months ago

If 4.2)^x =(0.42)^y=100 then 1/x-1/y

Answers

Answered by Rohith200422
25

Question:

If \:  {(4.2)}^{x}  =  {(0.42)}^{y}  = 100 \: then \:  \frac{1}{x}  -  \frac{1}{y}

Given data:

{(4.2)}^{x}  =  {(0.42)}^{y}  = 100

To find:

To \: find \: the \: value \: of \\ \frac{1}{x}  -  \frac{1}{y}

Answer:

 \underline{ \: \bold{ \frac{1}{2} } \: }\:is\:the\:value.

Step-by-step explanation:

{(4.2)}^{x}  =  {(0.42)}^{y}  = 100 =  {10}^{2}

\implies {(4.2)}^{x}  =  {10}^{2}

Now considering log on both sides,

log {(4.2)}^{x}  = log{(10)}^{2}

x.log 4.2  = 2.log 10

We \: know \: that, \: \boxed{log 10 = 1}

x.log 4.2  = 2

x =  \frac{2}{log 4.2}

 \boxed{ \frac{1}{x}  =  \frac{log 4.2}{2} }

 \implies {(0.42)}^{y}  =  {10}^{2}

Now considering log on both sides,

log {(0.42)}^{y}  =  {(10)}^{2}

y.log 0.42 = 2.log 10

We \: know \: that, \: \boxed{log 10 = 1}

y.log 0.42 = 2

y =  \frac{2}{log 0.42}

 \boxed{ \frac{1}{y}  =  \frac{log 0.42}{2} }

\implies \frac{1}{x}  -  \frac{1}{y}

=  \frac{log 4.2}{2}  -  \frac{0.42}{2}

 =  \frac{log \frac{4.2}{0.42} }{2}

 =  \frac{log 10}{2}

 =  \boxed{ \frac{1}{2} }

Here\:log 10 = 1

Answered by arunaya
4

If 4.2)^x =(0.42)^y=100 then 1/x-1/y

0.5 = 1/2

is the answer

Similar questions