Math, asked by singhrijul105, 11 months ago

If 4^2x-1 - 16^x-1 = 384, find the value of x.

FIRST ONE TO ANSWER GETS BRAINLIEST PLUSIT SHOULD BE CORRECT


annarobin: is it x raise to 2x-1 or xraise to 2x and then -1
singhrijul105: x raise to 2x-1

Answers

Answered by Anonymous
3

Answer \:  \\  \\ Given \:  \: Question \:  \: Is \:  \:  \\  \\ 4 {}^{(2x - 1)}  - 16 {}^{(x - 1)}  = 384 \\  \\ 4 {}^{2x}  \times 4 {}^{ - 1}  - 4 {}^{2x}  \times 4 {}^{ - 2}  = 384 \\   \\ 4 {}^{2x} ( 4 {}^{ - 1}  - 4 {}^{ - 2} ) = 384 \\  \\ 4 {}^{2x} ( \frac{1}{4}  -  \frac{1}{16} ) = 384 \\  \\ 4 {}^{2x} ( \frac{16 - 4}{16 \times 4} ) = 384 \\  \\ 4 {}^{2x} ( \frac{12}{64} ) = 384 \\  \\ 4 {}^{2x}  =  \frac{384 \times 64}{12}  \\  \\ 4 {}^{2x}  = 32 \times 64 \\  \\ 4 {}^{2x}  = 2 {}^{5}  \times 2 {}^{6}  \\  \\ 4 {}^{2x}  = 2 {}^{11}  \\  \\ 2 {}^{4x}  = 2 {}^{11}  \\ compare \: powers \: of \: 2 \: we \: have \\  \\ 4x = 11 \\  \\ x =  \frac{11}{4}

Answered by Anonymous
6

Answer:

\Huge x = \frac{11}{4}

Step-by-step explanation:

\begin{lgathered}\\ \\ 4 {}^{(2x - 1)} - 16 {}^{(x - 1)} = 384 \\ \\ 4 {}^{2x} \times 4 {}^{ - 1} - 4 {}^{2x} \times 4 {}^{ - 2} = 384 \\ \\ 4 {}^{2x} ( 4 {}^{ - 1} - 4 {}^{ - 2} ) = 384 \\ \\ 4 {}^{2x} ( \frac{1}{4} - \frac{1}{16} ) = 384 \\ \\ 4 {}^{2x} ( \frac{16 - 4}{16 \times 4} ) = 384 \\ \\ 4 {}^{2x} ( \frac{12}{64} ) = 384 \\ \\ 4 {}^{2x} = \frac{384 \times 64}{12} \\ \\ 4 {}^{2x} = 32 \times 64 \\ \\ 4 {}^{2x} = 2 {}^{5} \times 2 {}^{6} \\ \\ 4 {}^{2x} = 2 {}^{11} \\ \\ 2 {}^{4x} = 2 {}^{11} \\ \\ Compare \: Powers \: Of \: 2 \: We \: Have \\ \\ 4x = 11 \\ \\ x = \frac{11}{4}\end{lgathered}


Anonymous: hlo dear
Similar questions