if(-4,3) and (4,3)are two vertics of equilateral triangle, find the coordinates of the third vertex, given that the origin lies in the interior of the triangle
Answers
Step-by-step explanation:
y 2 – 6y – 39 = 0 y = -(-6) ± (- 6) 2 - 4(1)(-39) 2(1) y = 6 ± 36 + 156 2 = 6 ± 192 2 y = 6 ± 8 3 2 = 3 ± 4 3 ∴ y = 3 + 4√3 and 3 - 4√3 y ≠ 3 + 4 √3 , as origin lies in the interior of the triangle. Third vertex = (x, y) = (0, 3 - 4√3).
Given :---
- 2 vertices of Equilateral ∆ = (-4,3) and (4,3)
- Origin lies in the interior of the ∆ .
Concept and Formula used :---
→ Since , all sides of Equilateral ∆ are Equal in Length , We will compare length of distance of all sides .
→ distance between (x1,y1) & (x2,y2) is = √(x2-x1)² + (y2-y1)²
__________________
Solution :---
let the Third vertices be (x,y)
then Distance between (x,y) & (4,3) is :--
→ √(x-4)² + (y-3)² ---------------- Equation (1)
and Distance between (x,y) & (-4,3) is :-----
→ √(x+4)² + (y-3)² ---------------- Equation (2)
Distance between (4,3) &(-4,3) is :-------
→ √(4+4)² + (3-3)² = 8 units. ---------------- Equation (3)
_______________________
Now, since, Distance Between them all is Equal , as it is Equaliteral ∆.
so, Equation (1) = Equation (2)
→ √(x-4)² + (y-3)² = √(x+4)² + (y-3)²
→ (x-4)² = (x+4)²
→ x² - 8x + 16 = x² +8x +16
→ 16x = 0
→ x = 0
And, also , Equation (1) = Equation (3)
→ √(x-4)² + (y-3)² = 8
Squaring both sides
→ (x-4)² + (y-3)² = 64
Putting value of x = 0, now,
→ (y-3)² = 64-16
→ (y-3)² = 48
Square - root both sides now,
→ (y-3) = ±4√3
→ y = ±4√3 + 3
____________________________
Now, as origin lies in the interior of the triangle,
y ≠ 3+4√3 .