Math, asked by Anonymous, 7 months ago

if (4+3/x)(16-12/x+9/x^2)=5 then find (4-3/x)(16+12/x+9/x^2)

Answers

Answered by khashrul
0

Answer:

=\frac{1}{5} [16^3 - (\frac{9}{x^2})^3]

Step-by-step explanation:

(4 + \frac{3}{x} )(16 - \frac{12}{x}  + \frac{9}{x^{2} } ) = 5 [let's call this as equation no. i]

Let's assume (4 - \frac{3}{x} )(16 + \frac{12}{x}  + \frac{9}{x^{2} } ) = y  [let's call this as equation no. ii]

Now multiplying equation i by equation ii:

(4 + \frac{3}{x} )(4 - \frac{3}{x} )(16 - \frac{12}{x}  + \frac{9}{x^{2} } )(16 + \frac{12}{x}  + \frac{9}{x^{2} } ) = 5y

5y =[4^{2} - (\frac{3}{x}) ^{2} ][(16+\frac{9}{x^{2} }) ^{2} - (\frac{12}{x} )^2]

=[16 - (\frac{9}{x^2}) ][(16^2+\frac{288}{x^{2} } + \frac{81}{x^4}  ) - (\frac{12}{x} )^2]

=[16 - (\frac{9}{x^2}) ][(16^2+\frac{288}{x^{2} } + \frac{81}{x^4}  ) - \frac{144}{x^2} ]

=[16 - (\frac{9}{x^2}) ][(16^2-\frac{144}{x^{2} } + \frac{81}{x^4}  ) ]

=[16^3 - (\frac{9}{x^2})^3 ]  [∵ (a - b)(a^2 -ab + b^2) = a^3 - b^3]

=16^3 - (\frac{9}{x^2})^3

∴ y =\frac{1}{5} [16^3 - (\frac{9}{x^2})^3]

Similar questions