if (4.8)^x= (0.48)^y = 1,000 then the value of 1/x-1/y is ?
Answers
Answered by
17
Answer:
Step-by-step explanation:
(4.8)^x=1000
4.8=(1000)^(1/x)
48/10=(10^3)^(1/x)
48/10=10^(3/x)
48=10^(1+3/x)--->1
(0.48)^y=1000
0.48=(1000)^(1/y)
48/100=(10^3)^(1/y)
48/100=10^(3/y)
48=10^(2+3/y)--->2
From eq 1,2
10^(1+3/x)=10^(2+3/y)
1+3/x=2+3/y
(3/x)-(3/y)=2-1
3[(1/x)-(1/y)]=1
1/x-1/y=1/3
Answered by
8
Answer:
1/x + 1/y = 1/3
Step-by-step explanation:
Properties Used
- a^p = b then a= b^1/p
- (a^p)^r = (a)^p×q
- (a)^p × (a)^q = (a)^p+q
Attachments:
Similar questions