Math, asked by maani43, 1 year ago

if (4.8)^x= (0.48)^y = 1,000 then the value of 1/x-1/y is ?​

Answers

Answered by nnethajireddy
17

Answer:

Step-by-step explanation:

(4.8)^x=1000

4.8=(1000)^(1/x)

48/10=(10^3)^(1/x)

48/10=10^(3/x)

48=10^(1+3/x)--->1

(0.48)^y=1000

0.48=(1000)^(1/y)

48/100=(10^3)^(1/y)

48/100=10^(3/y)

48=10^(2+3/y)--->2

From eq 1,2

10^(1+3/x)=10^(2+3/y)

1+3/x=2+3/y

(3/x)-(3/y)=2-1

3[(1/x)-(1/y)]=1

1/x-1/y=1/3

Answered by Aditiiiiiiiiiii
8

Answer:

1/x + 1/y = 1/3

Step-by-step explanation:

Properties Used

  1. a^p = b then a= b^1/p
  2. (a^p)^r = (a)^p×q
  3. (a)^p × (a)^q = (a)^p+q
Attachments:
Similar questions