Math, asked by vijaykalal9538, 3 months ago

if 4,a,b,28 are in ap then the value of 'b'​

Answers

Answered by LoverBoy346
1

Answer:

12 and 20

Step-by-step explanation:

In an AP common difference is same,

d_1= a_2-a_1 = a_3-a_2

 \implies \: a - 4 = b - a

 \implies \: 2a = b + 4 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (1)

d_2= a_4-a_3 = a_3-a_2

 \implies \: 28 - b = b - a

 \implies \: 2b = 28 + a

 \implies \: a = 2b - 28 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (2)

Now put the value of a in equation 1,

 \implies \: 2(2b - 28) = b + 4

 \implies \: 4b - 56 = b + 4

 \implies \: 4b - b = 4 + 56

 \implies \: 3b = 60

 \implies \: b =  \frac{60}{3}

 \implies \boxed{b = 20}

Now put the value of b in equation 2

 \implies \: a = 2(20) - 28

 \implies \: a = 40 - 28

 \implies \boxed{a = 12}

Hence the values of a and b are 12 and 20 respectively,

Hence the AP Will be 4,12,20,28

Similar questions