Math, asked by rachitlund8662, 1 month ago

if 4,a,b,28 are in arithemetic progression then the value of b is A. 20. B.19. C. 23. D. 12.

Answers

Answered by amitnrw
2

Given : 4,a,b,28 are in arithmetic progression

To Find :

the value of b  

A. 20. B.19. C. 23. D. 12.

Solution:

4,a,b,28 are in arithmetic progression

=> a - 4  = b - a  =  28 - b   = common difference

a - 4  = 28  -  b

=> a + b  = 32

a - 4  = b - a  

=> 2a = b + 4

=> 2a - b  = 4

 a + b  = 32  

2a - b =  4

=> 3a = 36

=> a = 12

b = 20

Value of b =  20

Learn More:

the seventeenth term of an ap is 5 morethan twice its eighteenth ...

brainly.in/question/8045489

if mth term of an A.P.is n and nth term is m, show that (m+n)th term ...

brainly.in/question/1085792

Answered by MaheswariS
5

\underline{\textbf{Given:}}

\textsf{4, a, b, 28 are in A.P}

\underline{\textbf{To find:}}

\textsf{The value of b}

\underline{\textbf{Solution:}}

\textsf{Let 'd' be the common difference of the given A.P}

\mathsf{Then,}

\mathsf{a=4+d}

\mathsf{b=4+2d}

\mathsf{28=4+3d}

\implies\mathsf{3d=28-4}

\implies\mathsf{3d=24}

\implies\mathsf{d=8}

\mathsf{a=4+d=4+8=12}

\mathsf{b=4+2d=4+2(8)=4+16=20}

\underline{\textbf{Answer:}}

\textbf{The value of b is 20}

\underline{\textbf{Find more:}}

The 7th and 17th term of an arithmetic progression are 33 and 83 respectively find the ap  

https://brainly.in/question/15028631#

Similar questions