Math, asked by aarushdawar3579, 10 months ago

If 4^a2 + b^2 = 40 and ab = 6, find the value of 2a + b.​

Answers

Answered by Anonymous
1

Step-by-step explanation:

4a² + b² = 40

(2a)² + (b)² + 2(2a)(b) = 40 + 4ab

( 2a + b )² = 40 + 4(6) = 40+24 = 64

2a + b = 8

Answered by Anonymous
4

\large{\underline{\underline{\mathfrak{Answer :}}}}

2a + b = 8

\rule{200}{0.5}

\underline{\underline{\mathfrak{Step-By-Step-Explanation :}}}

Given :

  • \sf{4a^2 + b^2 = 40}
  • ab = 6

___________________

To Find :

  • We have to find value of \sf{2a + b}

___________________

Solution :

\sf{\implies 4a^2 + b^2 = 40} \\ \\ \sf{\implies (2a)^2 + b^2 = 40} \\ \\ \bf{Adding \: 4ab \: both \: sides} \\ \\ \sf{\implies (2a)^2 + b^2 + 4ab = 40 + 4ab} \\ \\ \large{\boxed{\sf{(x + y)^2 = x^2 + y^2 + 2xy}}}

Where,

  • x = 2a
  • y = b

\sf{\implies (2a + b)^2 = 40 + 4(6)} \\ \\ \sf{\implies (2a + b)^2 = 40 + 24} \\ \\ \sf{\implies (2a + b)^2 = 64} \\ \\ \sf{\implies (2a + b) = \sqrt{64}} \\ \\ \sf{\implies 2a + b = (\sqrt{8})^2} \\ \\ \sf{\implies 2a + b = 8} \\ \\ \large{\boxed{\sf{2a + b = 8}}}

Similar questions