Math, asked by rauniyar16pratibha, 8 months ago


If 4 cos^2θ + 4 sinθ - 5 = 0, show that sin θ = 1/2. anyone to solve this how to solve it ​

Answers

Answered by Anonymous
2

Step-by-step explanation:

\huge\underline{\overline{\mid{\bold{\pink{AnsWer}}\mid}}}

 \mathtt{\large{\purple{\underline{\underline{given}}}}} \\  \\  \displaystyle \sf \longrightarrow \: 4 \cos^{2} ( \theta)  + 4 \sin( \theta)  - 5 = 0 \\  \\  \mathtt{\large{\red{\underline{\underline{solution}}}}} \\  \\  \displaystyle \sf \longrightarrow 4(1 -  \sin ^{2} ( \theta) ) + 4 \sin( \theta)  - 5 = 0 \\  \\  \displaystyle \sf \longrightarrow 4 - 4 \sin ^{2} ( \theta)  + 4 \sin( \theta)  - 5 = 0 \\  \\  \displaystyle \sf \longrightarrow  - 4 \sin ^{2} ( \theta)  + 4 \sin( \theta)  - 1 = 0 \\  \\   \displaystyle \sf \longrightarrow  - (4 \sin ^{2} ( \theta)  - 4 \sin(  \theta)  + 1) = 0 \\  \\  \displaystyle \sf \longrightarrow 4 \sin ^{2} ( \theta)  - 2 \sin( \theta)  -  2 \sin( \theta) + 1 = 0 \\  \\   \displaystyle \sf \longrightarrow \: 2 \sin( \theta) (2 \sin( \theta - 1)  - 1(2 \sin( \theta - 1)  = 0 \\  \\\displaystyle \sf \longrightarrow(2 \sin \theta - 1) ( 2 \sin( \theta - 1)  = 0 \\  \\ \displaystyle \sf \longrightarrow \:  \sin( \theta)  =  \frac{1}{2}  \\  \\  \\   \sf \huge hence \: proved

Similar questions