if 4 cosA + 3 sinA =5, find the value of tan A
Answers
Answered by
0
Answer:
ANSWER
We have,
4cosθ+3sinθ=5
Then,
4cosθ+3sinθ=5
4cosθ+3
1−cos
2
θ
=5
3
1−cos
2
θ
=5−4cosθ
Squaring both side and we get,
9(1−cos
2
θ)=(5−4cosθ)
2
⇒9−9cos
2
θ=25+16cos
2
θ−40cosθ
⇒25+16cos
2
θ−40cosθ−9+9cos
2
θ=0
⇒25cos
2
θ−40cosθ+16=0
⇒(5cosθ)
2
−2×5cosθ×4+4
2
=0
⇒(5cosθ−4)
2
=0
⇒5cosθ−4=0
⇒5cosθ=4
⇒cosθ=
5
4
Put the value of given equation and we get,
4cosθ+3sinθ=5
⇒4×
5
4
+3sinθ=5
⇒
5
16
−5=3sinθ
⇒3sinθ=
5
16−25
⇒sinθ=−
1
⇒sinθ=
5
−3
Then,
tanθ=
cosθ
sinθ
tanθ=
5
4
−
5
3
tanθ=
4
−3
Similar questions