Math, asked by siddharthdeepak202, 5 hours ago

If 4 cotΘ =3, then sinΘ - cosΘ/ sinΘ + cosΘ is equal to
(a) 5/6
(b) 1/7
(c) 6/7
(d) 3/4

Attachments:

Answers

Answered by Anonymous
30

Given :-

 \quad \leadsto \quad \sf 4 \cot \theta = 3

To Find :-

 \quad \qquad \dfrac{\sin \theta - \cos \theta}{\sin \theta + \cos \theta}

Solution :-

Consider given ;

 \quad \leadsto \quad \sf 4 \cot \theta = 3

 { : \implies \quad \sf \cot \theta = \dfrac{3}{4} \quad \qquad ----( i ) }

Now , consider what we have to find ;

 \quad \leadsto \quad  \dfrac{\sin \theta - \cos \theta}{\sin \theta + \cos \theta}

Dividing both numerator and denominator by  \sin \theta we have ;

 { : \implies \quad \sf \dfrac{\dfrac{\sin \theta - \cos \theta}{\sin \theta}}{\dfrac{\sin \theta + \cos \theta}{\sin \theta}}}

Seperating The LCM of numerator and denominator we have ;

 { : \implies \quad \sf \dfrac{ \dfrac{\sin \theta}{\sin \theta} - \dfrac{\cos \theta}{\sin \theta}}{\dfrac{\sin \theta}{\sin \theta} + \dfrac{\cos \theta}{\sin \theta}} }

 { : \implies \quad \sf \dfrac{ \dfrac{\cancel{\sin \theta}}{\cancel{\sin \theta}} - \dfrac{\cos \theta}{\sin \theta}}{\dfrac{\cancel{\sin \theta}}{\cancel{\sin \theta}} + \dfrac{\cos \theta}{\sin \theta}} }

Now , we have ;

 { : \implies \quad \sf \dfrac{ 1 - \dfrac{\cos \theta}{\sin \theta}}{1 + \dfrac{\cos \theta}{\sin \theta}} }

We knows that ;

 \quad \qquad { \bigstar { \underline { \boxed { \red { \bf { \dfrac{\cos \theta}{\sin \theta} = \cot \theta }}}}}}{\bigstar}

Using this we have ;

 { : \implies \quad \sf \dfrac{ 1 - \cot \theta }{1 + \cot \theta } }

Now , putting the values we have obtained in eq. ( i ) we get ;

 { : \implies \quad \sf \dfrac{ 1 - \dfrac{3}{4} }{1 + \dfrac{3}{4} } }

 { : \implies \quad \sf \dfrac{\dfrac{4-3}{4}}{\dfrac{4+3}{4}}}

 { : \implies \quad \sf \dfrac{\dfrac{1}{\cancel{4}}}{\dfrac{7}{\cancel{4}}}}

 { : \implies \quad \tt \dfrac{1}{7}}

 \quad \qquad { \bigstar  { \underline { \boxed { \red { \underbrace { \bf \pmb { \dfrac{\sin \theta - \cos \theta}{\sin \theta + \cos \theta} = \dfrac{1}{7} }}}}}}}{\bigstar}

Henceforth , The Required Answer is option ( b )  \sf \dfrac{1}{7}

Answered by Anonymous
51

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\maltese\;  {\underline{\underline  {\textsf{\textbf{Question :}}}}}

  • If 4 cot ∅ =3, then sin∅ - cos∅ / sin∅+ cos∅ is equal to

\maltese\;  {\underline{\underline  {\textsf{\textbf{To Find :}}}}}

\bigstar \; {\underline{\boxed{\bf{ \frac{\sin \theta - \cos \theta }{\sin \theta + \cos \theta} }}}}

\maltese\;  {\underline{\underline  {\textsf{\textbf{Required Answer :}}}}}

  • The value of the expression equals to the fraction 1/7 [ option ( B ) ]

\maltese\;  {\underline{\underline  {\textsf{\textbf{Full Solution :}}}}}

★ Now we have the been provided with the value of 4 cot ∅ which is equivalent  to 3

  • \sf 4 \; cot \theta = 3
  • \sf cot \theta = 3/4 ---- ( 1 )  

{\bigstar \; {\underline{\pmb{\sf{ Since , it's \;known \; that\; trignometric \; ratios \; are \; as \; follows :}}}}}

\boxed{\begin{aligned}&\bullet\:\sin\theta = \rm{Opposite\:Side/Hypotenuse }\\&\bullet\:\cos\theta = \rm{Adjacent\:Side/Hypotenuse}\\&\bullet\:\tan\theta= \rm{Opposite\:Side/Adjacent\:Side }\\&\bullet\:\csc\theta =\rm{Hypotenuse/Opposite\:Side }\\&\bullet\:\sec\theta =\rm{Hypotenuse/Adjacent\:Side  }\\&\bullet\:\cot\theta =\rm{Adjacent\:Side/Opposite\:Side }\\\end{aligned}}  

From the above info :

  • we have the values of the adjacent and the opposite sides of the triangle now let's find out the value of hypotenuse of the triangle

* Pythagoras Theorem :  

Pythagoras theorem states the relation between the sides of a right angled triangle where the square of its hypotenuse equals to the sums of squares of its other two sides

Using the formula ,

\bigstar \; {\underline{\boxed{\bf{ Hypotenuse^2 = Opposite \; side^2 + Adjecent \; side ^2 }}}}

➞ Now let's find out the value of the hypotenuse of the triangle

{ \longrightarrow } \rm ( Hypotenuse ) ^2 = ( Adjacent \; side ) ^2 + ( Opposite \; side ) ^2

{ \longrightarrow } \rm ( Hypotenuse )  = \sqrt{( Adjacent \; side ) ^2 + ( Opposite \; side ) ^2}

{ \longrightarrow } \rm ( Hypotenuse )  = \sqrt{9 + 16}

{ \longrightarrow } \rm ( Hypotenuse )  = \sqrt{25}

{ \longrightarrow } \rm {\red{\underline{\underline{( Hypotenuse )  = 5 \; units}}}}

~ Therefore the value of the hypotenuse of the triangle is 5 units

\maltese\;  {\underline{\underline  {\textsf{\textbf{Diagram of triangle :}}}}}

\setlength{\unitlength}{1cm}\begin{picture}(6,5)\linethickness{.4mm}\put(1,1){\line(1,0){4.5}}\put(1,1){\line(0,1){3.5}}\qbezier(1,4.5)(1,4.5)(5.5,1) \put(3.4,3.5) {\large \bf 5 } \put(.3,2.5){\large\bf 4}\put(2.8,.3){\large\bf 3}\put(1.02,1.02){\framebox(0.3,0.3)}\put(.7,4.8){\large\bf A}\put(.8,.3){\large\bf B}\put(5.8,.3){\large\bf C}\qbezier(4.5,1)(4.3,1.25)(4.6,1.7)\put(3.8,1.3){\large\bf $\theta$}\end{picture}  

★ Since we know that the sin ratio is

\rightarrow \rm \sin \theta = Opposite  \; side / hypotenuse

\rightarrow \rm \sin \theta = 4/5

★ Since we know that the cos ratio is

\rightarrow \rm \cos \theta = Adjacent  \; side / hypotenuse

\rightarrow \rm \cos \theta = 3/5

─  Now let's substitute the value of the functions which were figured out

\longrightarrow \sf \dfrac{sin \theta - cos \theta }{sin \theta + cos \theta }

\longrightarrow \sf \dfrac{4/5 - 3/5}{4/5 + 3/5}

\longrightarrow \sf \dfrac{1/5}{7/5}

\longrightarrow \sf 1/7

\bf --------- - - - Alternate \; Method --------- - - - -

  • We know that \rm cosec^2 \theta - cot^2 \theta = 1

\longrightarrow \rm cosec^2 \theta = 1 + cot^2 \theta \cdots \cdots \tt transposing

\longrightarrow \rm cosec^2 \theta = 1 + ( 3/4 ) ^2

\longrightarrow \rm cosec^2 \theta = 1 + 9/16

\longrightarrow \rm cosec^2 \theta = 16 /16+ 9/16

\longrightarrow \rm cosec^2 \theta = 25/16

\longrightarrow \rm cosec \theta = 5/4

  • From the table above

★ We can state that sin function is the reciprocal of cosec

\longrightarrow \rm cosec \theta = 5/4

\longrightarrow \rm sin \theta = 4/5

  • We know that \rm sin^2 \theta + cos^2 \theta = 1  

\longrightarrow \rm cos^2 \theta = 1 - sin^2 \theta \cdots \cdots \tt transposing

\longrightarrow \rm cos^2 \theta = 1 - (4/5)^2

\longrightarrow \rm cos^2 \theta = 1 - 16/25

\longrightarrow \rm cos^2 \theta = 25/ 25 - 16/25

\longrightarrow \rm cos^2 \theta = 9/25

\longrightarrow \rm cos \theta = 3/5

  • Evaluating the above expression

\longrightarrow \sf \dfrac{sin \theta - cos \theta }{sin \theta + cos \theta }

\longrightarrow \sf \dfrac{4/5 - 3/5}{4/5 + 3/5}

\longrightarrow \sf \dfrac{1/5}{7/5}

\longrightarrow \sf 1/7

\maltese\;  {\underline{\underline  {\textsf{\textbf{Therefore :}}}}}

  • The value of the above given expression is 1/7

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions