Math, asked by Itzraisingstar, 10 months ago

if 4 cot A=3, find sin A +cos A/sin A-cos A,

Please any genius answer no spams

Answers

Answered by chitracharan15
23

Answer:

It's the right answer.

Hope it helps you.

Plz mark as brainliest plz.

Attachments:
Answered by anshi60
20

{\red{\huge{\underline{\mathbb{Given :-}}}}}

4cotA = 3 \\  \\ cotA =  \frac{3}{4}  =  \frac{QR}{PQ}   =  \frac{base}{perpendicular}  \\  \\ In \:  \triangle \: PQR  \implies \\  \\ By \: Pythagoras \: theorem :-\\  \\  ({PR})^{2}  = ( {PQ})^{2}  + ( {QR})^{2}  \\  \\ ( {PR})^{2}  =  {4}^{2}  +  {5}^{2}  \\  \\ (  {PR})^{2}  = 16 + 9 \\  \\  ({PR})^{2}  = 25 \\  \\ PR =  \sqrt{25}  \\  \\ PR =  \sqrt{5 \times 5}  \\  \\ PR = 5 \\  \\ {\purple{\boxed{\large{\bold{PR = 5}}}}} \\  \\ sin \theta=  \frac{Perpendicular}{hypotenuse}  \\  \\ sinA =  \frac{PQ}{PR}  =  \frac{4}{5}  \\  \\ cos \theta =  \frac{Base}{Hypotenuse}  \\  \\ cosA =   \frac{QR}{PR} =  \frac{3}{5}  \\  \\ Putting ,\:  \\ {\red{\boxed{\large{\bold{sinA =  \frac{4}{5} \: and \: cosA =  \frac{3}{5}  }}}}} \\  \\  \frac{sinaA + cosA}{sinA - cosA}  \\  \\  =  \frac{ \frac{4}{5} +  \frac{3}{5}  }{ \frac{4}{5}  -  \frac{3}{5} }  \\  \\  =   \frac{ \frac{4 + 3}{5} }{ \frac{4 - 3}{5} }  \\  \\  =  \frac{4 + 3}{4 - 3}  \\  \\  = 7 \\  \\ Therefore, </p><p>\\ {\green{\boxed{\large{\bold{ \frac{SinA + cosA}{sinA - cosA} = 7 }}}}}

Hope its helpful ❤️

Attachments:
Similar questions