Math, asked by snktka474, 11 months ago

If 4 cot theta = 5 show that 5 sin theta + 3 cos theta / 5 sin theta - 2 cos theta =7/2

Answers

Answered by hukam0685
8

Step-by-step explanation:

Given that: If 4 cot theta = 5 show that 5 sin theta + 3 cos theta / 5 sin theta - 2 cos theta =7/2

Solution:

Expression

if

4cot \theta = 5 \\  \\ cot \theta =  \frac{5}{4}  \\  \\

Then prove that

 \frac{5sin \theta + 3 cos\theta }{5sin \theta\:  - 2 cos \theta}  =  \frac{7}{2}  \\  \\

First of all take sin theta common from numerator and denominator ,

As we know that

cot \theta =  \frac{cos \theta}{sin \theta}  \\  \\

\frac{5sin \theta + 3 cos\theta }{5sin \theta\:  - 2 cos \theta} = \frac{sin \theta \bigg(5 + 3\frac{cos \theta}{sin \theta} \bigg)}{sin \theta \bigg(5 - 2  \frac{cos \theta}{sin \theta} \bigg) }  \\  \\  =  \frac{5 + 3cot \theta}{5  - cot \theta }  \\  \\  =  \frac{5 + 3 (\frac{5}{4}) }{5  - 2 (\frac{5}{4} ) } \\  \\  = \frac{5 +  \frac{15}{4} }{5  - \frac{10}{4}  } \\  \\  =  \frac{20 + 15}{4}  \times  \frac{4}{20 - 10}  \\  \\  =  \frac{35}{10}  \\  \\  =  \frac{7}{2}  \\  \\  = RHS \\  \\

Hence proved

Hope it helps you.

Answered by DIVINExGIRL
2

Answer:

Here is your answer in the attachment

Attachments:
Similar questions