Math, asked by sonipratham, 8 months ago

if 4-i√3 root of quadratic equation with real coefficients then the equation is

Answers

Answered by Anonymous
2

Answer:

\sf{The \ required \ quadratic \ equation \ is}

\sf{x^{2}-8x+19=0.}

Given:

\sf{If \ 4-i\sqrt3 \ is \ root \ of \ quadratic \ equation}

\sf{with \ real \ coefficients.}

To find:

\sf{The \ equation.}

Solution:

\sf{If \ roots \ of \ quadratic \ equation \ are}

\sf{in \ complex \ number \ they \ are \ in}

\sf{conjugate \ pair.}

\sf{Conjugate \ of \ 4-i\sqrt3 \ is \ 4+i\sqrt3}

\sf{\therefore{Roots \ are \ 4-i\sqrt3 \ and \ 4+i\sqrt3}}

\sf{Sum \ of \ roots=(4-i\sqrt3)+(4+i\sqrt3)}

\sf{\therefore{Sum \ of \ roots=8...(1)}}

\sf{Product \ of \ roots=(4-i\sqrt3)(4+i\sqrt3)}

\sf{\therefore{Product \ of \ roots=4^{2}-(i\sqrt3)^{2}}}

\sf{\therefore{Product \ of \ roots=16-3i^{2}}}

\sf{...[But \ i^{2}=-1]}

\sf{\therefore{Product \ of \ roots=16+3}}

\sf{\therefore{Product \ of \ roots=19...(2)}}

\sf{Quadratic \ equation \ can \ be \ written \ as}

\sf{x^{2}-(Sum \ of \ roots)x+(Product \ of \ roots)=0}

\sf{...from \ (1) \ and \ (2)}

\sf{\leadsto{x^{2}-8x+19=0}}

\sf\purple{\tt{\therefore{The \ required \ quadratic \ equation \ is}}}

\sf\purple{\tt{x^{2}-8x+19=0.}}

Similar questions