Math, asked by pawarks1234, 11 months ago

if 4 is a zero of a cubic polynomial
 {x}^{3 }  - 3 {x}^ {2}  - 10x + 24
find its other zeros​

Answers

Answered by roshan3496
81

Answer:

hope you understand ❤️ please make brainlist

Attachments:
Answered by Anonymous
86

AnsweR :

\bf{\Large{\underline{\sf{Given\::}}}}

If 4 is a zero of a cubic polynomial x³ - 3x² - 10x + 24.

\bf{\Large{\underline{\sf{To\:find\::}}}}

The other zeroes.

\bf{\Large{\underline{\rm{\purple{Explanation\::}}}}}

We have,

\leadsto\sf{x\:=\:4}\\\\Or\\\\\leadsto\sf{\red{x-4=0}}

So, divided by x-4 to cubic polynomial, we get;

\begin{array}{r|lllll}& x^2 & +x & -6 \\\cline{2-6} x - 4 & x^3 & -3x^2  & -10x & +24  \\ & x^3 &  -4x^2 \\ & - &  + \\ \cline{2-6} & & x^2 & -10x & +24  \\ & & x^2 & - 4x \\ & & -& +\\ \cline{2-6} &&& -6x &  +24 \\ &&& -6x & +24 \\ &&& + & - \\ \cline{2-6} &&&&& 00\end{array}

Now,

|\implies\tt{x^{2} +x-6=0}\\\\\\|\implies\tt{x^{2} +3x-2x-6=0}\\\\\\|\implies\tt{x(x+3)-2(x+3)=0}\\\\\\|\implies\tt{(x+3)(x-2)=0}\\\\\\|\implies\tt{x+3=0\:\:\:\:\:\:Or\:\:\:\:\:\:x-2=0}\\\\\\|\implies\tt{\orange{x=-3\:\:\:\:\:\:Or\:\:\:\:\:\:x=2}}

Thus,

\bigstarThe other two zeroes are x = -3 & 2.

Similar questions