Math, asked by mongolachatterjee585, 11 months ago

if 4^n-4^(n-1)=24 then find out the value of (2n)^n​

Answers

Answered by tahseen619
5

Answer:

 {5}^{( \frac{5}{2} )}

Step-by-step explanation:

{\underline{{\text{Given}}}}

 {4}^{(n)}  -  {4}^{(n - 1)}  = 24

{\underline{{\text{To Find:}}}}

The value of  {2n}^{n}

{\underline{{\text{Solution:}}}}

 {4}^{n}  -  {4}^{n - 1}  = 24\\  \\  {4}^{n}  -  {4}^{n} . {4}^{ - 1} = 24 \\  \\  {4}^{n} (1 -  {4}^{ - 1} ) = 24 \\  \\  {4}^{n} (1 -  \frac{1}{4} ) = 24 \\  \\  {4}^{n} ( \frac{4 - 1}{4} ) = 24 \\  \\  {4}^{n}   \times \frac{3}{4}  = 24 \\  \\  {4}^{n}  \times  \frac{ \cancel3}{4}  =  \cancel{24} \\  \\  { ({2}^{2} )}^{n}  = 4 \times 8 \\  \\   {2}^{2n} = 32 \\  \\ {2}^{2n} =  {2}^{5}  \\  \\ 2n = 5 \\  \\ n =  \frac{5}{2}

Now,

 {(2n)}^{n}  \\  \\ (2 \times  \frac{5}{2})^{ \frac{5}{2} }   \\  \\  {5}^{ (\frac{5}{2} )}  \\  \\ \therefore \text{The required answer is 5$^\frac{5}{2}$}</p><p>

{\underline{{\text{ Some Important Laws of Indices}}}}

 {a}^{n}  . {a}^{m}  =  {a}^{(n + m)}  \\  \\  {a}^{ - 1}  =  \frac{1}{a}  \\  \\   \frac{{a}^{n}}{ {a}^{m} }  =  {a}^{(n - m)}  \\  \\  {(a {}^{c} )}^{b}  =  {a}^{b \times c}  =  {a}^{bc}  \\  \\   {a}^{ \frac{1}{x} } =  \sqrt[x]{a}  \\  \\ [\text{where all variables are real and greater than 0}]

Similar questions