Math, asked by AnakhaMS, 5 months ago

If 4 raised to x+1 = 2 raised to 3x-1 find the value of x​

Answers

Answered by saurabhbhoir456
0

Answer:

Step-by-step explanation:

Attachments:
Answered by snehitha2
4

Answer :

The value of x is 3

Step-by-step explanation :

Given,

 \sf 4^{x+1}=2^{3x-1}

To find,

 the value of x

Solution,

    4 can be written as (2 × 2)

⇒ 4 = 2 × 2

⇒ 4 = 2¹ × 2¹

⇒ 4 = 2¹⁺¹        [ aᵐ + aⁿ = aᵐ⁺ⁿ ]

⇒ 4 = 2²

So,

  \sf 4^{x+1}=2^{3x-1} \\\\ (2^2)^{x+1}=2^{3x-1} \\\\ 2^{2x+2}=2^{3x-1} \\\\ \textbf{Bases are equal. Exponents must be equal.} \\\\ 2x+2=3x-1 \\\\ 3x-2x=2+1 \\\\ x=3

The value of x is 3

Verification :

  • Put x = 3,

  \sf 4^{x+1}=2^{3x-1} \\\\ 4^{3+1}=2^{3(3)-1} \\\\ 4^4=2^{9-1} \\\\ 4^4=2^8 \\\\ (2^2)^4=2^8 \\\\ 2^8=2^8 \\\\ LHS=RHS

Hence verified!

----------------------------------------------

Laws of exponents :

\begin{gathered}\boxed{\begin{minipage}{5 cm}\bf{\dag}\:\:\underline{\text{Laws of Exponents :}}\\\\\bigstar\:\:\sf\dfrac{a^m}{a^n} = a^{m - n}\\\\\bigstar\:\:\sf{(a^m)^n = a^{mn}}\\\\\bigstar\:\:\sf(a^m)(a^n) = a^{m + n}\\\\\bigstar\:\:\sf\dfrac{1}{a^n} = a^{-n}\\\\\bigstar\:\:\sf\sqrt[\sf n]{\sf a} = (a)^{\dfrac{1}{n}}\end{minipage}}\end{gathered}

Similar questions