Math, asked by sonakshisinhabxr604, 1 month ago

if(4+root5)/(4-root5)=(a+broot5),find the value of a and b​

Answers

Answered by mk8471139
2

Step-by-step explanation:

 \frac{4 +  \sqrt{5} }{4 -  \sqrt{5} }  \times  \frac{4 +  \sqrt{5} }{4 +  \sqrt{5} }  = a + b \sqrt{5}  \\  \frac{( {4 +  \sqrt{5)} }^{2} }{ {4}^{2} -  { \sqrt{5} }^{2}  }  \\  =   \frac{ {4}^{2} +  \sqrt{5}^{2}  + 2 \times 4 \times  \sqrt{5} }{16 - 5}  \\  =  \frac{16 + 5 + 8 \sqrt{5} }{11}  =  \frac{21 + 8 \sqrt{5} }{11}   \\  so \:  \: \frac{21 + 8 \sqrt{5} }{11}  = a + b \sqrt{5}  \\ hence \:  \: a =  \frac{21}{11}  \: and \: b =  \frac{8}{11}

Similar questions