Math, asked by dasrima979, 2 months ago

If 4 sin^2theta+9 cos^2 theta=12 sin theta cos theta.Then find 4sin theta+3 cos theta/5 sin theta -4cos theta​

Answers

Answered by Swarup1998
13

Given:

4sin^{2}\theta+9cos^{2}\theta=12sin\theta cos\theta

To find:

\dfrac{4sin\theta+3cos\theta}{5sin\theta-4cos\theta}

Step-by-step explanation:

Now, 4sin^{2}\theta+9cos^{2}\theta=12sin\theta cos\theta

\Rightarrow 4sin^{2}\theta-12sin\theta cos\theta+9cos^{2}\theta=0

\Rightarrow (2sin\theta-3cos\theta)^{2}=0

\Rightarrow 2sin\theta-3cos\theta=0

\Rightarrow 2sin\theta=3cos\theta

\Rightarrow \dfrac{sin\theta}{cos\theta}=\dfrac{3}{2}

\therefore \dfrac{4sin\theta+3cos\theta}{5sin\theta-4cos\theta}

  • divide both the numerator and the denominator by cos\theta\neq 0

=\dfrac{4\dfrac{sin\theta}{cos\theta}+3}{5\dfrac{sin\theta}{cos\theta}-4}

=\dfrac{4\times\dfrac{3}{2}+3}{5\times\dfrac{3}{2}-4}

  • since \dfrac{sin\theta}{cos\theta}=\dfrac{3}{2}

=\dfrac{6+3}{\dfrac{15-8}{2}}

=\dfrac{2\times 9}{7}

=\dfrac{18}{7}

Answer:

\dfrac{4sin\theta+3cos\theta}{5sin\theta-4cos\theta}=\dfrac{18}{7}

Similar questions