Math, asked by sawarna1980, 4 months ago

if 4 sin o = 3 cos o, find cos o​

Answers

Answered by BrainlyProgrammer
17

Solution:-

Given,

  • 4 sin o=3 cos o

Therefore, sin o=3/4 cos o

And cos o=4/3 sin o

We know,

tan o= sin o/cos o

= (3/4 cos o) / cos o

=3/4

but tan o= perpendicular/base

let the perpendicular and bade=3x and 4x respectively

Therefore we got

  • perpendicular=3
  • base= 4

Using Pythagorean theorem....

hypotenuse^2 = base^2+height^2

= (4)^2 + (3)^2

= 16 + 9

= 25

We got, hypotenus= (25) =5

Now, sin o = height/hypotenus

= 3/5

cos o=4/3 sin o [As mentioned in the beginning]

° cos o= 4/3×3/5

= 4/5

Correct Answer:-

  • sin o= 3/5
  • cos o= 4/5


sawarna1980: can you fin sin o also
sawarna1980: can you find sin o also
BrainlyProgrammer: It's given in the beginning of the answer
BrainlyProgrammer: i had edited the answer....where value of sin o=4/5
BrainlyProgrammer: *3/5
Answered by Anonymous
6

Given:-

  • 4 sin o = 3 cos o

To find:-

  • Cos o = ?

Solution:-

Therefore,Sin o = 3/4 cos o

And cos o = 4/3 sin o

We know that

\large\sf\red{tan{\theta = {\frac{Sin{\theta}{Cos{\theta}}}}}}

\sf \implies \:  \frac{ \frac{3cos \theta}{4} }{cos \theta}  \\  \\  \sf \implies \:  \frac{3}{4}

But

\large\sf\green{tan{\theta={\frac{Perpendicular}{Base}}}}

Let the Perpendicular and base = 3x and 4x respectively.

Therefore, we got

  • Perpendicular = 3
  • Base = 4

Using Pythagorean theorem.

\large\sf\purple{H}^{2}\large\sf\purple{=B}^{2}+{H}^{2}

 \sf \implies \:  {4}^{2}  +  {3}^{2}  \\  \\  \sf \implies \: 16 +9 \\  \\  \sf \implies \: 25 \\  \\

We got, Hypotenuse = √25 = 5

Now,

Sin o = H/P

= 3/5

Cos o = 4/3 × 3/5 = 4/5

Similar questions