Math, asked by sauveerdixit, 1 year ago

If 4 sin theta-3 cos theta= 0
Find:
(a) sin theta
(b) cos theta


Anonymous: sintheta = 3/5 and costheta = 4/5
sauveerdixit: yes but how?
Anonymous: 4sintheta = 3costheta -------> tantheta = 3/4 -------> sintheta = 3/5 and costheta = 4/5

Answers

Answered by Anonymous
9

\boxed{\mathsf{ Solution :  }}


\mathsf{ Given, }  \\  \\ \mathsf{ \implies 4 \: sin \: \theta \: - \: 3 \: cos \: \theta \: = \: 0 } \\ \\<br /><br />\mathsf{ Using \: trigonometric \: identity : } \\ \\<br /><br />\boxed{\mathsf{ \implies sin \: \theta \: = \: \sqrt{ \: 1 \: - \: {cos}^{2} \: \theta }}}<br />


\mathsf{ \implies 4 \: \sqrt{\: 1 \: - \: {cos}^{2} \: \theta \: } \: - \: 3 \: cos \: \theta \: = \: 0 }<br />  \\  \\  \mathsf{ \implies4 \sqrt{ \: 1 \:  -  \:  {cos}^{2} \:  \theta }  \:  =  \: 3 \: cos \:  \theta} \\  \\  \mathsf{ \implies  \sqrt{ \: 1 \:  -  \:  {cos}^{2}  \:  \theta}  \:  =  \:  \dfrac{3 \: cos \:  \theta}{4} } \\  \\  \mathsf{ \implies1 \:  -  \:  {cos}^{2}  \:  \theta \:  =  \:  { (\dfrac{3 \: cos \:  \theta}{4} )}^{2} } \\  \\  \mathsf{ \implies 1 \:  -  \:  {cos}^{2} \:  \theta \:  =  \:  \dfrac{9 \:  {cos}^{2} \:  \theta }{16}  }

 \mathsf{ \implies16( \: 1 \:  -  \:  {cos}^{2}   \:  \theta \: ) \:  =  \: 9 \:  {cos}^{2}  \:  \theta } \\  \\  \mathsf{ \implies  16 \:  -  \: 16 \:  {cos}^{2} \:  \theta \:  =  \: 9 \:  {cos}^{2}   \:  \theta} \\  \\  \mathsf{ \implies 16 \:  =  \: 9 \:  {cos}^{2} \: \theta \:  +  \: 16 \:  {cos}^{2}  \:  \theta } \\  \\  \mathsf{ \implies 16 \:  =  \: 25 \:  {cos}^{2}   \:  \theta} \\  \\  \mathsf{ \implies {cos}^{2} \:  \theta \:  =  \:  \dfrac{16}{25}  }


 \mathsf{ \implies cos \: \theta \:  =  \:  \sqrt{ \dfrac{16}{25} } } \\  \\  \mathsf{ \therefore \: cos \:  \theta \:  =  \:  \frac{4}{5} }

\mathsf{ Now, }  \\  \\  \mathsf{ \implies sin \:  \theta \:  =  \:  \sqrt{ \: 1  \:  -  \:  {cos}^{2} \:  \theta \:   } } \\  \\  \mathsf{ \implies sin \:  \theta \:  =  \:  \sqrt{ \: 1 \:  -  \: ( \dfrac{4}{5} )^{2} } } \\  \\  \mathsf{ \implies sin \:  \theta \:  =  \:  \sqrt{ \: 1 \:  -  \:  \dfrac{16}{25} } } \\  \\  \mathsf{ \implies sin \: \theta \:  =  \:  \sqrt{ \dfrac{25 \:  -  \: 16}{25} } } \\  \\  \mathsf{ \implies sin \:  \theta \:  =  \:  \sqrt{ \dfrac{9}{25} } } \\  \\  \mathsf{ \therefore \: sin \:  \theta \:  =  \:  \dfrac{3}{5} }


 \\  \boxed{ \mathsf{  \implies sin \:  \theta \:  =  \:  \dfrac{3}{5} \: ,<br /> \:  \implies cos \:  \theta \:  =  \:  \dfrac{4}{5}  }}

dikshaverma4you: Well done! keep it up :)
Anonymous: Thanks Didu !!
sauveerdixit: Thank you so much VaVaibhav.
Similar questions