Math, asked by simranpreet5468, 17 days ago

: If 4 tanβ = 3, then find the value of following expression. *

4 sinB -3cosB
4 sinB+3 cos B

Answers

Answered by manmeet70002
1

Answer:

4tan(B)=3

\tt tan(B)=\dfrac{3}{4}tan(B)=

4

3

\tt tan(B)=\dfrac{opposite\:side}{adjecent\:side}tan(B)=

adjecentside

oppositeside

\sf opposite\:side=3oppositeside=3

\sf adjecent\:side=4adjecentside=4

By using Pythagoras theorem,

\tt (a)^2+(b)^2=(c)^2(a)

2

+(b)

2

=(c)

2

\tt (3)^2+(4)^2=(c)^2(3)

2

+(4)

2

=(c)

2

\tt c=\sqrt{9+16}c=

9+16

\tt c=\sqrt{25}c=

25

\tt c=5c=5

\sf sin(B)=\dfrac{opposite\:side}{hypotenuse}sin(B)=

hypotenuse

oppositeside

\sf sin(B)=\dfrac{3}{5}sin(B)=

5

3

\sf cos(B)=\dfrac{adjecent\:side}{hypotenuse}cos(B)=

hypotenuse

adjecentside

\sf cos(B)=\dfrac{4}{5}cos(B)=

5

4

\tt \dfrac{4sin(B)-3cos(B)}{4sin(B)+3cos(B)}

4sin(B)+3cos(B)

4sin(B)−3cos(B)

\tt =\dfrac{4\bigg(\dfrac{3}{5}\bigg)-3\bigg(\dfrac{4}{5}\bigg)}{4\bigg(\dfrac{3}{5}\bigg)+3\bigg(\dfrac{4}{5}\bigg)}=

4(

5

3

)+3(

5

4

)

4(

5

3

)−3(

5

4

)

\tt =\dfrac{\dfrac{12}{5}-\dfrac{12}{5}}{\dfrac{12}{5}+\dfrac{12}{5}}=

5

12

+

5

12

5

12

5

12

\tt= \dfrac{\dfrac{(60-60)}{5}}{\dfrac{(60+60)}{5}}=

5

(60+60)

5

(60−60)

\tt= \dfrac{5(0)}{5(120)}=

5(120)

5(0)

\tt= \dfrac{0}{600}=

600

0

\tt= 0=0

Similar questions