Math, asked by alamnoman9p, 1 month ago

if 4 tan beta = 3 , then 4 sin beta - 3 cos beta / 4 sin beta + 3 cos beta​

Answers

Answered by IamIronMan0
27

Answer:

0

Step-by-step explanation:

Given

4 \tan( \beta )  = 3

So this

 \implies \tan( \beta )  =  \frac{3}{4}  \\  \\  \implies \frac{ \sin( \beta ) }{ \cos( \beta ) }  =  \frac{3}{4}  \\  \\  \implies4 \sin( \beta )  = 3 \cos( \beta )  \\  \\  \implies \: 4 \sin( \beta   )  - 3 \cos( \beta )  = 0

Using this , if we divide zero by any thing we will get zero .

Answered by pulakmath007
8

SOLUTION

GIVEN

4tanβ = 3

TO DETERMINE

 \displaystyle \sf{ \frac{4 \sin  \beta  - 3 \cos  \beta }{4 \sin  \beta   + 3 \cos  \beta } }

EVALUATION

Here it is given that

4tanβ = 3

Now

 \displaystyle \sf{ \frac{4 \sin  \beta  - 3 \cos  \beta }{4 \sin  \beta   + 3 \cos  \beta } }

Dividing both of the numerator and denominator by cosβ we get

 \displaystyle \sf{  = \frac{4  \dfrac{\sin  \beta}{ \cos  \beta}  - 3 \dfrac{ \cos  \beta}{ \cos  \beta}  }{4  \dfrac{\sin  \beta}{ \cos  \beta}   + 3 \dfrac{ \cos  \beta}{ \cos  \beta}} }

 \displaystyle \sf{  = \frac{4 \tan  \beta  - 3}{4 \tan  \beta  +  3}  }

 \displaystyle \sf{  = \frac{3 - 3}{3  +  3}  }

 \displaystyle \sf{  = \frac{0}{6}  }

 \displaystyle \sf{  = 0 }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If cosθ+secθ=√2,find the value of cos²θ+sec²θ

https://brainly.in/question/25478419

2. Value of 3 + cot 80 cot 20/cot80+cot20 is equal to

https://brainly.in/question/17024513

3. In a triangle, prove that (b+c-a)(cotB/2+cotC/2)=2a×cotA/2

https://brainly.in/question/19793971

Similar questions