Math, asked by kunal366, 1 year ago

if 4 tan theta=3 evaluate (4sin theta -cos theta +1 appon 4sin theta + cos theta -1

Answers

Answered by EmadAhamed
608
↑ Here is your answer 
_____________________________________________________________
_____________________________________________________________

Let ∠A be '∅' (see figure.)

4tan∅ = 3

tan∅ =  \frac{3}{4}

 \frac{Opposite}{Adjacent} =  \frac{3}{4}

So, hypothenuse will be 5 by Pythagoras theorem.

Now,

 \frac{4sin∅ - cos∅ + 1}{4sin∅ + cos∅ - 1}

 \frac{ 4 * \frac{3}{5} - \frac{4}{5} + 1 }{ 4 * \frac{3}{5} + \frac{4}{5} - 1 }

 \frac{ \frac{12- 4 + 5}{5} }{ \frac{12 +4 - 5}{5}}

5 will cancel out,

=  \frac{13}{11}

= 1.18

____________________________________________________________________________________________________________________________

Glad to help you.
@EmadAhamed
Attachments:
Answered by mysticd
340

Solution :


[ Here I am using A instead of


theta ]


It is given that ,


4tanA = 3 ---( 1 )


tanA = 3/4


=> tan² A = 9/16


=> sec²A - 1 = 9/16


=> sec²A = 9/16 + 1


=> sec²A = ( 9 + 16)/16


=> Sec²A = 25/16


=> SecA = 5/4 ---( 2 )


Now ,


(4sinA-cosA+1)/(4sinA+cosA-1)


Divide numerator and denominator


With cosA, we get


(4tanA-1+secA)/(4tanA+1-secA)


= (3-1+5/4)/(3+1-5/4) [from(1)&(2)]


= (2+5/4)/(4-5/4)


Divide numerator and denominator


With 4 , we get


= ( 8 + 5 )/( 16 - 5 )


= 13/11


••••


Similar questions