Math, asked by srivastavam09oyf6lp, 1 year ago

If 4 tan theta = 3 , then find (4 sin theta - cos theta-1) / (4 sin theta + cos theta+1)

Answers

Answered by Anonymous
91
I hope this will be helpful for u......!!!!!
Thank u.........
Attachments:

srivastavam09oyf6lp: yeah i got it, thank u tooo anshukeharia
rupsi24: hii
rupsi24: ashukarheria00
Answered by mysticd
10

Answer:

 Value \: of \: \frac{4sin\theta-cos\theta-1}{4sin\theta+cos\theta+1}=\frac{1}{17}

Step-by-step explanation:

 Given \: 4tan\theta = 3\\\implies tan\theta = \frac{3}{4}\:---(1)

sec\theta \\= \sqrt{1+tan^{2}\theta}\\=\sqrt{1+\left(\frac{3}{4}\right)^{2}}\\=\sqrt{1+\frac{9}{16}}\\=\sqrt{\frac{16+9}{16}}\\=\sqrt{\frac{25}{9}}\\=\frac{5}{3}\:---(2)

 Value \: of \: \frac{4sin\theta-cos\theta-1}{4sin\theta+cos\theta+1}

 Divide\: numerator\: and\\ denominator\: by \:cos\theta,\\ we get

=\frac{4tan\theta-1-\frac{1}{cos\theta}}{4tan\theta+1+\frac{1}{cos\theta}}

=\frac{4tan\theta-1-sec\theta}{4tan\theta+1+sec\theta}

=\frac{4\times \frac{3}{4}-1-\frac{5}{3}}{4\times \frac{3}{4}+1+\frac{5}{3}}

/* From (1) and (2) */

=\frac{3-1-\frac{5}{3}}{3+1+\frac{5}{3}}\\=\frac{2-\frac{5}{3}}{4+\frac{5}{3}}

=\frac{\frac{6-5}{3}}{\frac{12+5}{3}}

=\frac{1}{17}

Therefore,

 Value \: of \: \frac{4sin\theta-cos\theta-1}{4sin\theta+cos\theta+1}=\frac{1}{17}

•••♪

Similar questions