Math, asked by Anonymous, 1 year ago

If 4 tan theta = 3 , then find (4 sin theta - cos theta / 4 sin theta + cos theta)

Answers

Answered by Anonymous
4

Answer:-

Given:-

4 \: tan\theta=3

To find:-

\frac{4 \: sin\theta-cos\theta}{4 \: sin\theta+cos\theta} =??

Solution:-

4 \: tan\theta=3

tan\theta=\frac{3}{4}............................eq \: 1

\frac{4 \: sin\theta-cos\theta}{4 \: sin\theta+cos\theta} = \frac{4\frac{sin\theta}{cos\theta}-1}{4\frac{sin\theta}{cos\theta}+1 }      [divide by cosθ in both numerator and dinominator]

\frac{4 \: tan\theta-1}{4 \: tan\theta+1}

                           [tan\theta=\frac{sin\theta}{cos\theta} ]

\frac{4(\frac{3}{4})-1 }{4(\frac{3}{4})+1 }

\frac{3-1}{3+1}

\frac{2}{4} =\frac{1}{2}

                            [put the value from eq 1]

Hence, the value of \frac{4 \: sin\theta-cos\theta}{4 \: sin\theta+cos\theta} is \frac{1}{2}

Answered by SmartyAyushSingh
2

Answer:

Step-by-step explanation:

4tanA = 3 ---( 1 )

tanA = 3/4

=> tan² A = 9/16

=> sec²A - 1 = 9/16

=> sec²A = 9/16 + 1

=> sec²A = ( 9 + 16)/16

=> Sec²A = 25/16

=> SecA = 5/4 ---( 2 )

Now ,

(4sinA-cosA+1)/(4sinA+cosA-1)

Divide numerator and denominator

With cosA, we get

(4tanA-1+secA)/(4tanA+1-secA)

= (3-1+5/4)/(3+1-5/4) [from(1)&(2)]

= (2+5/4)/(4-5/4)

Divide numerator and denominator

With 4 , we get

= ( 8 + 5 )/( 16 - 5 )

= 13/11


Anonymous: wrong answer
Similar questions