if 4 tan theta =3 then prove that sin theta cos theta =12/25
plz answer me fast
Answers
Solution :
We have 4 tan Ф = 3
Diagram :
Now;
Hence, Proved.
Answer:
⟶(hypotenuse)
2
=(base)
2
+(perpendicular)
2
⟶(AC)
2
=(BC)
2
+(AB)
2
⟶(AC)
2
=(4)
2
+(3)
2
⟶(AC)
2
=16+9
⟶(AC)
2
=25
⟶AC=
25
⟶AC=5units
Now;
\begin{gathered}\longrightarrow\sf{sin\theta\times cos\theta=\dfrac{12}{25} }\\\\\\\longrightarrow\sf{\dfrac{Perpendicular}{Hypotenuse} \times \dfrac{Base}{Hypotenuse} =\dfrac{12}{25} }\\\\\\\longrightarrow\sf{\dfrac{AB}{AC} \times \dfrac{BC}{AC} =\frac{12}{25}}\\\\\\\longrightarrow\sf{\dfrac{3}{5} \times \dfrac{4}{5} =\dfrac{12}{25}} \\\\\\\longrightarrow\bf{\dfrac{12}{25} =\dfrac{12}{25} \:\:\:[L.H.S=R.H.S]}\end{gathered}
⟶sinθ×cosθ=
25
12
⟶
Hypotenuse
Perpendicular
×
Hypotenuse
Base
=
25
12
⟶
AC
AB
×
AC
BC
=
25
12
⟶
5
3
×
5
4
=
25
12
⟶
25
12
=
25
12
[L.H.S=R.H.S]
Hence, Proved.